Singleton-Optimal LRCs and Perfect LRCs via Cyclic and Constacyclic Codes

Weijun Fang, Fang-Wei Fu, Bin Chen, S. Xia
{"title":"Singleton-Optimal LRCs and Perfect LRCs via Cyclic and Constacyclic Codes","authors":"Weijun Fang, Fang-Wei Fu, Bin Chen, S. Xia","doi":"10.48550/arXiv.2303.06287","DOIUrl":null,"url":null,"abstract":"Locally repairable codes (LRCs) have emerged as an important coding scheme in distributed storage systems (DSSs) with relatively low repair cost by accessing fewer non-failure nodes. Theoretical bounds and optimal constructions of LRCs have been widely investigated. Optimal LRCs via cyclic and constacyclic codes provide significant benefit of elegant algebraic structure and efficient encoding procedure. In this paper, we continue to consider the constructions of optimal LRCs via cyclic and constacyclic codes with long code length. Specifically, we first obtain two classes of $q$-ary cyclic Singleton-optimal $(n, k, d=6;r=2)$-LRCs with length $n=3(q+1)$ when $3 \\mid (q-1)$ and $q$ is even, and length $n=\\frac{3}{2}(q+1)$ when $3 \\mid (q-1)$ and $q \\equiv 1(\\bmod~4)$, respectively. To the best of our knowledge, this is the first construction of $q$-ary cyclic Singleton-optimal LRCs with length $n>q+1$ and minimum distance $d \\geq 5$. On the other hand, an LRC acheiving the Hamming-type bound is called a perfect LRC. By using cyclic and constacyclic codes, we construct two new families of $q$-ary perfect LRCs with length $n=\\frac{q^m-1}{q-1}$, minimum distance $d=5$ and locality $r=2$.","PeriodicalId":156673,"journal":{"name":"Finite Fields Their Appl.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields Their Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.06287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Locally repairable codes (LRCs) have emerged as an important coding scheme in distributed storage systems (DSSs) with relatively low repair cost by accessing fewer non-failure nodes. Theoretical bounds and optimal constructions of LRCs have been widely investigated. Optimal LRCs via cyclic and constacyclic codes provide significant benefit of elegant algebraic structure and efficient encoding procedure. In this paper, we continue to consider the constructions of optimal LRCs via cyclic and constacyclic codes with long code length. Specifically, we first obtain two classes of $q$-ary cyclic Singleton-optimal $(n, k, d=6;r=2)$-LRCs with length $n=3(q+1)$ when $3 \mid (q-1)$ and $q$ is even, and length $n=\frac{3}{2}(q+1)$ when $3 \mid (q-1)$ and $q \equiv 1(\bmod~4)$, respectively. To the best of our knowledge, this is the first construction of $q$-ary cyclic Singleton-optimal LRCs with length $n>q+1$ and minimum distance $d \geq 5$. On the other hand, an LRC acheiving the Hamming-type bound is called a perfect LRC. By using cyclic and constacyclic codes, we construct two new families of $q$-ary perfect LRCs with length $n=\frac{q^m-1}{q-1}$, minimum distance $d=5$ and locality $r=2$.
单最优lrc和基于循环码和恒循环码的完美lrc
局部可修复码(lrc)是分布式存储系统(DSSs)中一种重要的编码方案,它通过访问较少的非故障节点来降低修复成本。lrc的理论边界和最优结构已经得到了广泛的研究。循环码和恒循环码的最优lrc具有简洁的代数结构和高效的编码过程。在本文中,我们继续考虑用长码长的循环码和常循环码来构造最优lrc。具体来说,我们首先得到了两类$q$ -任意循环单态最优$(n, k, d=6;r=2)$ - lrc,当$3 \mid (q-1)$和$q$为偶数时,它们的长度为$n=3(q+1)$,当$3 \mid (q-1)$和$q \equiv 1(\bmod~4)$为偶数时,它们的长度为$n=\frac{3}{2}(q+1)$。据我们所知,这是第一次构造$q$ -任意循环单态最优lrc,长度$n>q+1$,最小距离$d \geq 5$。另一方面,实现汉明型界的LRC称为完美LRC。利用循环码和恒循环码,构造了两个新的$q$ -任意完美lrc族,它们的长度为$n=\frac{q^m-1}{q-1}$,最小距离为$d=5$,局域为$r=2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信