Unsupervised Learning Approaches for the Finite Mixture Models: EM versus MCMC

Weifeng Liu
{"title":"Unsupervised Learning Approaches for the Finite Mixture Models: EM versus MCMC","authors":"Weifeng Liu","doi":"10.1109/CYBERC.2010.96","DOIUrl":null,"url":null,"abstract":"The key problem in unsupervised learning of finite mixture models is to estimate the parameters of the models. The expectation-maximization (EM) and Markov Chain Monte Carlo (MCMC) are usually used. In this paper, we review these two algorithms and give the complete algorithm processes. We also comment their advantage and disadvantage.","PeriodicalId":315132,"journal":{"name":"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERC.2010.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The key problem in unsupervised learning of finite mixture models is to estimate the parameters of the models. The expectation-maximization (EM) and Markov Chain Monte Carlo (MCMC) are usually used. In this paper, we review these two algorithms and give the complete algorithm processes. We also comment their advantage and disadvantage.
有限混合模型的无监督学习方法:EM与MCMC
有限混合模型的无监督学习的关键问题是模型参数的估计。通常使用期望最大化(EM)和马尔可夫链蒙特卡罗(MCMC)。本文综述了这两种算法,并给出了完整的算法过程。我们还评论了它们的优点和缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信