Fisher Kernels for Handwritten Word-spotting

F. Perronnin, José A. Rodríguez-Serrano
{"title":"Fisher Kernels for Handwritten Word-spotting","authors":"F. Perronnin, José A. Rodríguez-Serrano","doi":"10.1109/ICDAR.2009.16","DOIUrl":null,"url":null,"abstract":"The Fisher kernel is a generic framework which combines the benefits of generative and discriminative approaches to pattern classification. In this contribution, we propose to apply this framework to handwritten word-spotting. Given a word image and a keyword generative model, the idea is to generate a vector which describes how the parameters of the keyword model should be modified to best fit the word image.This vector can then be used as the input of a discriminative classifier. We compare the performance of the proposed approach with that of a generative baseline on a challenging real-world dataset of customer letters. When the kernel used by the classifier is linear, the performance improvement is marginal but the proposed system is approximately 15 times faster than the baseline. If we use a non-linear kernel devised for this task, we obtain a 15\\% relative reduction of the error but the detector is approximately 15 times slower.","PeriodicalId":433762,"journal":{"name":"2009 10th International Conference on Document Analysis and Recognition","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2009.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

The Fisher kernel is a generic framework which combines the benefits of generative and discriminative approaches to pattern classification. In this contribution, we propose to apply this framework to handwritten word-spotting. Given a word image and a keyword generative model, the idea is to generate a vector which describes how the parameters of the keyword model should be modified to best fit the word image.This vector can then be used as the input of a discriminative classifier. We compare the performance of the proposed approach with that of a generative baseline on a challenging real-world dataset of customer letters. When the kernel used by the classifier is linear, the performance improvement is marginal but the proposed system is approximately 15 times faster than the baseline. If we use a non-linear kernel devised for this task, we obtain a 15\% relative reduction of the error but the detector is approximately 15 times slower.
用于手写单词识别的Fisher核函数
Fisher核是一个通用框架,它结合了模式分类的生成和判别方法的优点。在这篇文章中,我们建议将这个框架应用于手写单词识别。给定一个单词图像和一个关键字生成模型,其思想是生成一个矢量,该矢量描述了如何修改关键字模型的参数以最适合单词图像。这个向量可以用作判别分类器的输入。我们将所提出的方法的性能与在具有挑战性的真实客户信件数据集上生成基线的性能进行了比较。当分类器使用的内核是线性的时,性能的提高是微不足道的,但是所提出的系统比基线快了大约15倍。如果我们使用为这项任务设计的非线性内核,我们可以获得15%的相对误差减少,但检测器的速度大约要慢15倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信