Pattern recognition using Boltzmann machine

Hede Ma
{"title":"Pattern recognition using Boltzmann machine","authors":"Hede Ma","doi":"10.1109/SECON.1995.513051","DOIUrl":null,"url":null,"abstract":"An approach for pattern recognition using neural networks is proposed. Particularly, a Boltzmann machine, a Hopfield neural net model, is used in pattern recognition with desirable learning ability. The Boltzmann machine features stochastic learning, which acts as the connection dynamics for determining the weights on the connections between the neuron-like cells (processing elements) of different layers in the neural network. An algorithm for pattern recognition using Boltzmann machine is also presented, which could be coded with the C programming language or others to implement the approach for efficient pattern recognition.","PeriodicalId":334874,"journal":{"name":"Proceedings IEEE Southeastcon '95. Visualize the Future","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Southeastcon '95. Visualize the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1995.513051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

An approach for pattern recognition using neural networks is proposed. Particularly, a Boltzmann machine, a Hopfield neural net model, is used in pattern recognition with desirable learning ability. The Boltzmann machine features stochastic learning, which acts as the connection dynamics for determining the weights on the connections between the neuron-like cells (processing elements) of different layers in the neural network. An algorithm for pattern recognition using Boltzmann machine is also presented, which could be coded with the C programming language or others to implement the approach for efficient pattern recognition.
基于玻尔兹曼机的模式识别
提出了一种基于神经网络的模式识别方法。特别地,在模式识别中使用了玻尔兹曼机(Hopfield神经网络模型),具有良好的学习能力。玻尔兹曼机的特点是随机学习,它作为连接动力学来确定神经网络中不同层的类神经元细胞(处理元素)之间连接的权重。本文还提出了一种基于玻尔兹曼机的模式识别算法,该算法可以用C语言或其他语言编写,以实现高效的模式识别方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信