Parallel algorithm for mining fuzzy association rules

Baowen Xu, Jianjiang Lu, Yingzhou Zhang, Lei Xu, Huowang Chen, Hongji Yang
{"title":"Parallel algorithm for mining fuzzy association rules","authors":"Baowen Xu, Jianjiang Lu, Yingzhou Zhang, Lei Xu, Huowang Chen, Hongji Yang","doi":"10.1109/CYBER.2003.1253467","DOIUrl":null,"url":null,"abstract":"The principle and steps of the algorithm for mining fuzzy association rules is studied, and the parallel algorithm for mining fuzzy association rules is presented. In this parallel mining algorithm, quantitative attributes are partitioned into several fuzzy sets by the parallel fuzzy c-means algorithm, and fuzzy sets are applied to soften the partition boundary of the attributes. Then, the parallel algorithm for mining Boolean association rules is improved to discover frequent fuzzy attributes. Last, the fuzzy association rules with at least fuzzy confidence are generated on all processors. The parallel mining algorithm is implemented on the distributed linked PC/workstation. The experiment results show that the parallel mining algorithm has fine scaleup, sizeup and speedup.","PeriodicalId":130458,"journal":{"name":"Proceedings. 2003 International Conference on Cyberworlds","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2003 International Conference on Cyberworlds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBER.2003.1253467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The principle and steps of the algorithm for mining fuzzy association rules is studied, and the parallel algorithm for mining fuzzy association rules is presented. In this parallel mining algorithm, quantitative attributes are partitioned into several fuzzy sets by the parallel fuzzy c-means algorithm, and fuzzy sets are applied to soften the partition boundary of the attributes. Then, the parallel algorithm for mining Boolean association rules is improved to discover frequent fuzzy attributes. Last, the fuzzy association rules with at least fuzzy confidence are generated on all processors. The parallel mining algorithm is implemented on the distributed linked PC/workstation. The experiment results show that the parallel mining algorithm has fine scaleup, sizeup and speedup.
模糊关联规则挖掘的并行算法
研究了模糊关联规则挖掘算法的原理和步骤,提出了模糊关联规则挖掘的并行算法。该算法采用并行模糊c均值算法将定量属性划分为多个模糊集,并利用模糊集软化属性的划分边界。然后,改进了布尔关联规则并行挖掘算法,发现频繁模糊属性。最后,在所有处理器上生成至少具有模糊置信度的模糊关联规则。并行挖掘算法在分布式连接的PC/工作站上实现。实验结果表明,该并行挖掘算法具有良好的放大、缩小和加速性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信