A mapreduce approach for processing large-scale remote sensing images

Yi Liu, Luo Chen, W. Xiong, Lu Liu, Dianhua Yang
{"title":"A mapreduce approach for processing large-scale remote sensing images","authors":"Yi Liu, Luo Chen, W. Xiong, Lu Liu, Dianhua Yang","doi":"10.1109/Geoinformatics.2012.6270312","DOIUrl":null,"url":null,"abstract":"This paper introduces a practical approach to process large-scale remote sensing images based on MapReduce program model. The proposed approach breaks the global large-scale remote sensing images processing into a set of different resolutions localized domains (tiles). Within each tile, the different remote sensing image processing algorithm can be applied. The critical step in this approach is how to integrate the MapReduce model smoothly with the large-scale remote sensing images processing. The proposed approach adopts the idea of tile pyramid which partition the global into multi-resolutions tiles. With the tile pyramid model, each remote sensing image will be partitioned and assigned to multi-resolutions tiles that it overlapped, and then all images assigned to the same tile will be assembled to form the final tile image; finally, the per-tile image processing can be performed. The experiment results show the feasibility, efficiency and scalability of solving large-scale remote sensing images problems with the proposed approach.","PeriodicalId":259976,"journal":{"name":"2012 20th International Conference on Geoinformatics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Geoinformatics.2012.6270312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper introduces a practical approach to process large-scale remote sensing images based on MapReduce program model. The proposed approach breaks the global large-scale remote sensing images processing into a set of different resolutions localized domains (tiles). Within each tile, the different remote sensing image processing algorithm can be applied. The critical step in this approach is how to integrate the MapReduce model smoothly with the large-scale remote sensing images processing. The proposed approach adopts the idea of tile pyramid which partition the global into multi-resolutions tiles. With the tile pyramid model, each remote sensing image will be partitioned and assigned to multi-resolutions tiles that it overlapped, and then all images assigned to the same tile will be assembled to form the final tile image; finally, the per-tile image processing can be performed. The experiment results show the feasibility, efficiency and scalability of solving large-scale remote sensing images problems with the proposed approach.
一种处理大尺度遥感图像的mapreduce方法
介绍了一种基于MapReduce程序模型的大尺度遥感图像处理的实用方法。该方法将全球大尺度遥感图像处理分解为一组不同分辨率的局部域(tiles)。在每个tile中,可以应用不同的遥感图像处理算法。该方法的关键是如何将MapReduce模型与大尺度遥感图像处理顺利集成。该方法采用了块金字塔的思想,将全局分割成多分辨率的块。利用瓦片金字塔模型,将每幅遥感图像分割并分配到重叠的多分辨率瓦片上,然后将分配到同一瓦片上的所有图像进行组装,形成最终的瓦片图像;最后进行逐块图像处理。实验结果表明,该方法具有求解大尺度遥感图像问题的可行性、高效性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信