Salient region detection based on Adaboost and integration of multi-features space

Yi Zhang, Qi-chang Duan, Sile Li, Yunxian Ran
{"title":"Salient region detection based on Adaboost and integration of multi-features space","authors":"Yi Zhang, Qi-chang Duan, Sile Li, Yunxian Ran","doi":"10.1109/ICCT.2017.8359883","DOIUrl":null,"url":null,"abstract":"Based on the existing methods, this paper tries to propose a salient region detection based on integrated theory of features and Adaboost algorithm. The integration theory of features indicates that the salient region corresponds to multi-features space, such as color, direction, shape, texture and so on. And the visual system deals with independent features in parallel. The visual system make individual characteristics become a salient area. Adaboost algorithm is able to integrate multiple independent weakly classifiers into a high-performance and powerful classifier. In order to obtain better salient region result, this paper introduces the Adaboost theory to integrate multi-features space.","PeriodicalId":199874,"journal":{"name":"2017 IEEE 17th International Conference on Communication Technology (ICCT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Communication Technology (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT.2017.8359883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the existing methods, this paper tries to propose a salient region detection based on integrated theory of features and Adaboost algorithm. The integration theory of features indicates that the salient region corresponds to multi-features space, such as color, direction, shape, texture and so on. And the visual system deals with independent features in parallel. The visual system make individual characteristics become a salient area. Adaboost algorithm is able to integrate multiple independent weakly classifiers into a high-performance and powerful classifier. In order to obtain better salient region result, this paper introduces the Adaboost theory to integrate multi-features space.
基于Adaboost的显著区域检测与多特征空间融合
在现有方法的基础上,本文尝试提出一种基于特征融合理论和Adaboost算法的显著区域检测方法。特征的整合理论表明,突出区域对应于多特征空间,如颜色、方向、形状、纹理等。视觉系统并行处理独立的特征。视觉系统使个体特征成为一个突出的区域。Adaboost算法能够将多个独立的弱分类器集成为一个高性能且功能强大的分类器。为了获得更好的显著区结果,本文引入Adaboost理论对多特征空间进行整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信