Predicting Time-to-Failure of Plasma Etching Equipment using Machine Learning

Anahid N. Jalali, Clemens Heistracher, Alexander Schindler, Bernhard Haslhofer, Tanja Nemeth, Robert Glawar, W. Sihn, Peter De Boer
{"title":"Predicting Time-to-Failure of Plasma Etching Equipment using Machine Learning","authors":"Anahid N. Jalali, Clemens Heistracher, Alexander Schindler, Bernhard Haslhofer, Tanja Nemeth, Robert Glawar, W. Sihn, Peter De Boer","doi":"10.1109/ICPHM.2019.8819404","DOIUrl":null,"url":null,"abstract":"Predicting unscheduled breakdowns of plasma etching equipment can reduce maintenance costs and production losses in the semiconductor industry. However, plasma etching is a complex procedure and it is hard to capture all relevant equipment properties and behaviors in a single physical model. Machine learning offers an alternative for predicting upcoming machine failures based on relevant data points. In this paper, we describe three different machine learning tasks that can be used for that purpose: (i) predicting Time-To-Failure (TTF), (ii) predicting health state, and (iii) predicting TTF intervals of an equipment. Our results show that trained machine learning models can outperform benchmarks resembling human judgments in all three tasks. This suggest that machine learning offers a viable alternative to currently deployed plasma etching equipment maintenance strategies and decision making processes.","PeriodicalId":113460,"journal":{"name":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2019.8819404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Predicting unscheduled breakdowns of plasma etching equipment can reduce maintenance costs and production losses in the semiconductor industry. However, plasma etching is a complex procedure and it is hard to capture all relevant equipment properties and behaviors in a single physical model. Machine learning offers an alternative for predicting upcoming machine failures based on relevant data points. In this paper, we describe three different machine learning tasks that can be used for that purpose: (i) predicting Time-To-Failure (TTF), (ii) predicting health state, and (iii) predicting TTF intervals of an equipment. Our results show that trained machine learning models can outperform benchmarks resembling human judgments in all three tasks. This suggest that machine learning offers a viable alternative to currently deployed plasma etching equipment maintenance strategies and decision making processes.
利用机器学习预测等离子体蚀刻设备的故障时间
预测等离子体蚀刻设备的意外故障可以降低半导体行业的维护成本和生产损失。然而,等离子体蚀刻是一个复杂的过程,很难在一个单一的物理模型中捕捉到所有相关的设备特性和行为。机器学习为基于相关数据点预测即将发生的机器故障提供了另一种选择。在本文中,我们描述了可用于该目的的三种不同的机器学习任务:(i)预测故障间隔时间(TTF), (ii)预测健康状态,以及(iii)预测设备的TTF间隔。我们的研究结果表明,经过训练的机器学习模型在这三个任务中都可以超越类似人类判断的基准。这表明机器学习为目前部署的等离子蚀刻设备维护策略和决策过程提供了可行的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信