Node label matching improves classification performance in Deep Belief Networks

Allan Campbell, V. Ciesielski, A. K. Qin
{"title":"Node label matching improves classification performance in Deep Belief Networks","authors":"Allan Campbell, V. Ciesielski, A. K. Qin","doi":"10.1109/IJCNN.2016.7727395","DOIUrl":null,"url":null,"abstract":"If output signals of artificial neural network classifiers are interpreted per node as class label predictors then partial knowledge encoded by the network during the learning procedure can be exploited in order to reassign which output node should represent each class label so that learning speed and final classification accuracy are improved. Our method for computing these reassignments is based on the maximum average correlation between actual node outputs and target labels over a small labeled validation dataset. Node Label Matching is an ancillary method for both supervised and unsupervised learning in artificial neural networks and we demonstrate its integration with Contrastive Divergence pre-training in Restricted Boltzmann Machines and Back Propagation fine-tuning in Deep Belief Networks. We introduce the Segmented Density Random Binary dataset and present empirical results of Node Label Matching on both our synthetic data and a subset of the MNIST benchmark.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

If output signals of artificial neural network classifiers are interpreted per node as class label predictors then partial knowledge encoded by the network during the learning procedure can be exploited in order to reassign which output node should represent each class label so that learning speed and final classification accuracy are improved. Our method for computing these reassignments is based on the maximum average correlation between actual node outputs and target labels over a small labeled validation dataset. Node Label Matching is an ancillary method for both supervised and unsupervised learning in artificial neural networks and we demonstrate its integration with Contrastive Divergence pre-training in Restricted Boltzmann Machines and Back Propagation fine-tuning in Deep Belief Networks. We introduce the Segmented Density Random Binary dataset and present empirical results of Node Label Matching on both our synthetic data and a subset of the MNIST benchmark.
节点标签匹配提高了深度信念网络的分类性能
如果将人工神经网络分类器的输出信号解释为每个节点的类标签预测器,则可以利用网络在学习过程中编码的部分知识来重新分配哪个输出节点代表每个类标签,从而提高学习速度和最终的分类精度。我们计算这些重新分配的方法是基于一个小的标记验证数据集上实际节点输出和目标标签之间的最大平均相关性。节点标签匹配是人工神经网络中监督学习和无监督学习的辅助方法,我们证明了它与限制性玻尔兹曼机的对比发散预训练和深度信念网络的反向传播微调相结合。我们介绍了分段密度随机二值数据集,并在我们的合成数据和MNIST基准的一个子集上给出了节点标签匹配的经验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信