{"title":"Tensor Chain Decomposition and Function Interpolation","authors":"P. Tichavský, A. Phan","doi":"10.1109/SSP53291.2023.10207942","DOIUrl":null,"url":null,"abstract":"Tensor Chain (TC) decomposition represents a given tensor as a chain (circle) of order-3 tensors (wagons) connected through tensor contractions. In this paper, we show the link between the TC decomposition and a structured Tucker decompositions, and propose a variant of the Krylov-Levenberg-Marquardt optimization, tailored for this problem. Many extensions can be considered, here we only mention decomposition of tensor with missing entries, which enables the tensor completion. Performance of the proposed algorithm is demonstrated on tensor decomposition of the sampled Rosenbrock function. It can be better modeled both as TC and canonical polyadic (CP) decomposition, but with TC, the reconstruction is possible with a lower number of function values.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10207942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tensor Chain (TC) decomposition represents a given tensor as a chain (circle) of order-3 tensors (wagons) connected through tensor contractions. In this paper, we show the link between the TC decomposition and a structured Tucker decompositions, and propose a variant of the Krylov-Levenberg-Marquardt optimization, tailored for this problem. Many extensions can be considered, here we only mention decomposition of tensor with missing entries, which enables the tensor completion. Performance of the proposed algorithm is demonstrated on tensor decomposition of the sampled Rosenbrock function. It can be better modeled both as TC and canonical polyadic (CP) decomposition, but with TC, the reconstruction is possible with a lower number of function values.