Two-Stream Federated Learning: Reduce the Communication Costs

Xin Yao, C. Huang, Lifeng Sun
{"title":"Two-Stream Federated Learning: Reduce the Communication Costs","authors":"Xin Yao, C. Huang, Lifeng Sun","doi":"10.1109/VCIP.2018.8698609","DOIUrl":null,"url":null,"abstract":"Federated learning algorithm solves the problem of training machine learning models over distributed networks that consist of a massive amount of modern smart devices. It overcomes the challenge of privacy preservation, unbalanced and Non-IID data distributions, and does its best to reduce the required communication rounds. However, communication costs are still the principle constraint compared to other factors, such as computation costs. In this paper, we adopt a two-stream model with MMD (Maximum Mean Discrepancy) constraint instead of the single model to be trained on devices in standard federated learning settings. Following experiments show that the proposed model outperforms baseline methods, especially in Non-IID data distributions, and achieves a reduction of more than 20% in required communication rounds.","PeriodicalId":270457,"journal":{"name":"2018 IEEE Visual Communications and Image Processing (VCIP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2018.8698609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

Federated learning algorithm solves the problem of training machine learning models over distributed networks that consist of a massive amount of modern smart devices. It overcomes the challenge of privacy preservation, unbalanced and Non-IID data distributions, and does its best to reduce the required communication rounds. However, communication costs are still the principle constraint compared to other factors, such as computation costs. In this paper, we adopt a two-stream model with MMD (Maximum Mean Discrepancy) constraint instead of the single model to be trained on devices in standard federated learning settings. Following experiments show that the proposed model outperforms baseline methods, especially in Non-IID data distributions, and achieves a reduction of more than 20% in required communication rounds.
两流联合学习:降低通信成本
联邦学习算法解决了在由大量现代智能设备组成的分布式网络上训练机器学习模型的问题。它克服了隐私保护、不平衡和非iid数据分布的挑战,并尽最大努力减少所需的通信轮数。然而,与计算成本等其他因素相比,通信成本仍然是主要制约因素。在本文中,我们采用具有MMD(最大平均差异)约束的两流模型来代替标准联邦学习设置中设备上的单一模型进行训练。随后的实验表明,该模型优于基线方法,特别是在非iid数据分布中,所需的通信轮数减少了20%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信