An Extreme Learning Machine-based pedestrian detection method

Kai Yang, Yingzi Du, E. Delp, Pingge Jiang, Feng Jiang, Yaobin Chen, Rini Sherony, Hiroyuki Takahashi
{"title":"An Extreme Learning Machine-based pedestrian detection method","authors":"Kai Yang, Yingzi Du, E. Delp, Pingge Jiang, Feng Jiang, Yaobin Chen, Rini Sherony, Hiroyuki Takahashi","doi":"10.1109/IVS.2013.6629663","DOIUrl":null,"url":null,"abstract":"Pedestrian detection is a challenging task due to the high variance of pedestrians and fast changing background, especially for a single in-car camera system. Traditional HOG+SVM methods have two challenges: (1) false positives and (2) processing speed. In this paper, a new pedestrian detection method using multimodal HOG for pedestrian feature extraction and kernel based Extreme Learning Machine (ELM) for classification is presented. The experimental results using our naturalistic driving dataset show that the proposed method outperforms the traditional HOG+SVM method in both recognition accuracy and processing speed.","PeriodicalId":251198,"journal":{"name":"2013 IEEE Intelligent Vehicles Symposium (IV)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2013.6629663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Pedestrian detection is a challenging task due to the high variance of pedestrians and fast changing background, especially for a single in-car camera system. Traditional HOG+SVM methods have two challenges: (1) false positives and (2) processing speed. In this paper, a new pedestrian detection method using multimodal HOG for pedestrian feature extraction and kernel based Extreme Learning Machine (ELM) for classification is presented. The experimental results using our naturalistic driving dataset show that the proposed method outperforms the traditional HOG+SVM method in both recognition accuracy and processing speed.
一种基于极限学习机的行人检测方法
行人检测是一项具有挑战性的任务,因为行人的高度变化和背景的快速变化,特别是对于单个车载摄像头系统。传统的HOG+SVM方法存在两个挑战:(1)误报和(2)处理速度。本文提出了一种基于多模态HOG的行人特征提取和基于核的极限学习机(ELM)分类的行人检测方法。基于自然驱动数据集的实验结果表明,该方法在识别精度和处理速度上都优于传统的HOG+SVM方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信