Kai Yang, Yingzi Du, E. Delp, Pingge Jiang, Feng Jiang, Yaobin Chen, Rini Sherony, Hiroyuki Takahashi
{"title":"An Extreme Learning Machine-based pedestrian detection method","authors":"Kai Yang, Yingzi Du, E. Delp, Pingge Jiang, Feng Jiang, Yaobin Chen, Rini Sherony, Hiroyuki Takahashi","doi":"10.1109/IVS.2013.6629663","DOIUrl":null,"url":null,"abstract":"Pedestrian detection is a challenging task due to the high variance of pedestrians and fast changing background, especially for a single in-car camera system. Traditional HOG+SVM methods have two challenges: (1) false positives and (2) processing speed. In this paper, a new pedestrian detection method using multimodal HOG for pedestrian feature extraction and kernel based Extreme Learning Machine (ELM) for classification is presented. The experimental results using our naturalistic driving dataset show that the proposed method outperforms the traditional HOG+SVM method in both recognition accuracy and processing speed.","PeriodicalId":251198,"journal":{"name":"2013 IEEE Intelligent Vehicles Symposium (IV)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2013.6629663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Pedestrian detection is a challenging task due to the high variance of pedestrians and fast changing background, especially for a single in-car camera system. Traditional HOG+SVM methods have two challenges: (1) false positives and (2) processing speed. In this paper, a new pedestrian detection method using multimodal HOG for pedestrian feature extraction and kernel based Extreme Learning Machine (ELM) for classification is presented. The experimental results using our naturalistic driving dataset show that the proposed method outperforms the traditional HOG+SVM method in both recognition accuracy and processing speed.