Dimensionality reduction using neuro-genetic approach for early prediction of coronary heart disease

H. Murthy, M. Meenakshi
{"title":"Dimensionality reduction using neuro-genetic approach for early prediction of coronary heart disease","authors":"H. Murthy, M. Meenakshi","doi":"10.1109/CIMCA.2014.7057817","DOIUrl":null,"url":null,"abstract":"This paper presents the development of a Neuro-genetic model for the prediction of coronary heart diseases. The novelty of this work is feature subset selection using multi-objective genetic algorithm without sacrificing the accuracy of ANN based heart disease predictor. Subsequently, the selected feature subset is used to predict the level of angiographic coronary heart disease using neural networks. The performance of the developed Neuro-Genetic model is evaluated using heart disease database obtained from Cleveland Clinic Foundation Database with all attributes are numeric-valued. The accuracy of the designed Neruo-Genetic model is validated using 303 patient data sets obtained for different age groups. This study exhibits early detection of heart disease with high testing accuracy of 89.58% through minimized feature subset, thereby reducing the complexity.","PeriodicalId":127013,"journal":{"name":"International Conference on Circuits, Communication, Control and Computing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Circuits, Communication, Control and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMCA.2014.7057817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper presents the development of a Neuro-genetic model for the prediction of coronary heart diseases. The novelty of this work is feature subset selection using multi-objective genetic algorithm without sacrificing the accuracy of ANN based heart disease predictor. Subsequently, the selected feature subset is used to predict the level of angiographic coronary heart disease using neural networks. The performance of the developed Neuro-Genetic model is evaluated using heart disease database obtained from Cleveland Clinic Foundation Database with all attributes are numeric-valued. The accuracy of the designed Neruo-Genetic model is validated using 303 patient data sets obtained for different age groups. This study exhibits early detection of heart disease with high testing accuracy of 89.58% through minimized feature subset, thereby reducing the complexity.
用神经遗传学方法降维用于冠心病早期预测
本文介绍了一种预测冠心病的神经遗传模型的发展。本研究的新颖之处在于在不牺牲基于神经网络的心脏病预测精度的前提下,采用多目标遗传算法选择特征子集。随后,将选择的特征子集用于使用神经网络预测血管造影冠心病的水平。所开发的神经遗传模型的性能评估使用从克利夫兰诊所基金会数据库获得的心脏病数据库,所有属性均为数值。使用不同年龄组的303例患者数据集验证了所设计的神经遗传模型的准确性。本研究通过最小化特征子集实现了心脏病的早期检测,检测准确率高达89.58%,从而降低了复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信