Grid features based visual tracking

Yi Zhou, H. Snoussi, Shibao Zheng
{"title":"Grid features based visual tracking","authors":"Yi Zhou, H. Snoussi, Shibao Zheng","doi":"10.1109/CSAE.2011.5952844","DOIUrl":null,"url":null,"abstract":"Vulnerability to occlusion is one of the main issue in visual tracking. In this proposal, we exploit the local grid features to build a robust tracker. To improve performance under occlusion, local and global features are modeled for a target tracking. Cooperating with the novel features, a new segmentation and similarity measurement are proposed for exploring the local grid advantages. Experimental results show that our tracker outperforms other two effective visual tracking methods under occlusion.","PeriodicalId":138215,"journal":{"name":"2011 IEEE International Conference on Computer Science and Automation Engineering","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAE.2011.5952844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vulnerability to occlusion is one of the main issue in visual tracking. In this proposal, we exploit the local grid features to build a robust tracker. To improve performance under occlusion, local and global features are modeled for a target tracking. Cooperating with the novel features, a new segmentation and similarity measurement are proposed for exploring the local grid advantages. Experimental results show that our tracker outperforms other two effective visual tracking methods under occlusion.
基于网格特征的视觉跟踪
遮挡脆弱性是视觉跟踪中的主要问题之一。在这个建议中,我们利用局部网格特征来构建一个鲁棒跟踪器。为了提高遮挡下的性能,对目标跟踪进行了局部和全局特征建模。结合这些新的特征,提出了一种新的分割和相似度度量方法来挖掘局部网格的优势。实验结果表明,该跟踪器在遮挡下的性能优于其他两种有效的视觉跟踪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信