Automatic Feature Subset Selection for Clustering Images using Differential Evolution

V. S. Srinivas, A. Srikrishna, B. E. Reddy
{"title":"Automatic Feature Subset Selection for Clustering Images using Differential Evolution","authors":"V. S. Srinivas, A. Srikrishna, B. E. Reddy","doi":"10.1109/MIPR.2018.00051","DOIUrl":null,"url":null,"abstract":"Storing and organizing huge collection of image databases is a challenge for many applications. Such huge collection of images can be organized efficiently using image content clustering. Image Clustering is mapping of images into classes according to their similarity without any prior knowledge. Clustering of images into groups can improve the efficiency of searching images in the database for various web applications. Image content characterization greatly influences the result of clustering. This paper addresses the problem of characterizing and clustering a set of images using Differential Evolution. This work proposes a new algorithm, Automatic Feature Subset Selection for Clustering Images using Differential Evolution (AFSCIDE), to characterize the images with proper selection of textural features by feature subset selection and find groups with clustering using Differential Evolution. Experiments are conducted on various benchmark datasets CUReT, UIUC.","PeriodicalId":320000,"journal":{"name":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"851 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR.2018.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Storing and organizing huge collection of image databases is a challenge for many applications. Such huge collection of images can be organized efficiently using image content clustering. Image Clustering is mapping of images into classes according to their similarity without any prior knowledge. Clustering of images into groups can improve the efficiency of searching images in the database for various web applications. Image content characterization greatly influences the result of clustering. This paper addresses the problem of characterizing and clustering a set of images using Differential Evolution. This work proposes a new algorithm, Automatic Feature Subset Selection for Clustering Images using Differential Evolution (AFSCIDE), to characterize the images with proper selection of textural features by feature subset selection and find groups with clustering using Differential Evolution. Experiments are conducted on various benchmark datasets CUReT, UIUC.
基于差分进化的聚类图像特征子集自动选择
存储和组织大量的图像数据库是许多应用程序面临的挑战。使用图像内容聚类可以有效地组织如此庞大的图像集合。图像聚类是在没有任何先验知识的情况下,根据图像的相似度将图像映射成不同的类。将图像聚类成组可以提高各种web应用程序在数据库中搜索图像的效率。图像内容表征对聚类结果影响很大。本文讨论了用差分进化对一组图像进行特征化和聚类的问题。本文提出了一种新的算法——基于差分进化的聚类图像自动特征子集选择(AFSCIDE),该算法通过特征子集选择对图像进行纹理特征的适当选择,并利用差分进化对图像进行聚类。在不同的基准数据集上进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信