{"title":"Compression Methodologies for Columnar Database Optimization","authors":"Praveen Kumar Sadineni","doi":"10.53409/mnaa/jcsit/e202203012432","DOIUrl":null,"url":null,"abstract":"Today’s life is completely dependent on data. Conventional relational databases take longer to respond to queries because they are built for row-wise data storage and retrieval. Due to their efficient read and write operations to and from hard discs, which reduce the time it takes for queries to produce results, columnar databases have recently overtaken traditional databases. To execute Business Intelligence and create decision-making systems, vast amounts of data gathered from various sources are required in data warehouses, where columnar databases are primarily created. Since the data are stacked closely together, and the seek time is reduced, columnar databases perform queries more quickly. With aggregation queries to remove unnecessary data, they allow several compression techniques for faster data access. To optimise the efficiency of columnar databases, various compression approaches, including NULL Suppression, Dictionary Encoding, Run Length Encoding, Bit Vector Encoding, and Lempel Ziv Encoding, are discussed in this work. Database operations are conducted on the compressed data to demonstrate the decrease in memory needs and speed improvements.","PeriodicalId":125707,"journal":{"name":"Journal of Computational Science and Intelligent Technologies","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science and Intelligent Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53409/mnaa/jcsit/e202203012432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Today’s life is completely dependent on data. Conventional relational databases take longer to respond to queries because they are built for row-wise data storage and retrieval. Due to their efficient read and write operations to and from hard discs, which reduce the time it takes for queries to produce results, columnar databases have recently overtaken traditional databases. To execute Business Intelligence and create decision-making systems, vast amounts of data gathered from various sources are required in data warehouses, where columnar databases are primarily created. Since the data are stacked closely together, and the seek time is reduced, columnar databases perform queries more quickly. With aggregation queries to remove unnecessary data, they allow several compression techniques for faster data access. To optimise the efficiency of columnar databases, various compression approaches, including NULL Suppression, Dictionary Encoding, Run Length Encoding, Bit Vector Encoding, and Lempel Ziv Encoding, are discussed in this work. Database operations are conducted on the compressed data to demonstrate the decrease in memory needs and speed improvements.