Mandari: Multi-Modal Temporal Knowledge Graph-aware Sub-graph Embedding for Next-POI Recommendation

Xiaoqian Liu, Xiuyun Li, Yuan Cao, Fan Zhang, Xiongnan Jin, Jinpeng Chen
{"title":"Mandari: Multi-Modal Temporal Knowledge Graph-aware Sub-graph Embedding for Next-POI Recommendation","authors":"Xiaoqian Liu, Xiuyun Li, Yuan Cao, Fan Zhang, Xiongnan Jin, Jinpeng Chen","doi":"10.1109/ICME55011.2023.00264","DOIUrl":null,"url":null,"abstract":"Next-POI recommendation aims to explore from user check-in sequence to predict the next possible location to be visited. Existing methods are often difficult to model the implicit association of multi-modal data with user choices. Moreover, traditional methods struggle to fully explore the variation of user preferences at variable time intervals. To tackle these limitations, we propose a Multi-Modal Temporal Knowledge Graph-aware Sub-graph Embedding approach (Mandari). We first construct a novel Multi-Modal Temporal Knowledge Graph. Based on the proposed knowledge graph, we integrate multi-modal information and leverage the graph attention network to calculate sub-graph prediction probability. Next, we implement a temporal knowledge mining method to model the segmentation and periodicity of user check-in and obtain temporal prediction probability. Finally, we fuse temporal prediction probability with the previous sub-graph prediction probability to obtain the final result. Extensive experiments demonstrate that our approach outperforms existing state-of-the-art methods.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Next-POI recommendation aims to explore from user check-in sequence to predict the next possible location to be visited. Existing methods are often difficult to model the implicit association of multi-modal data with user choices. Moreover, traditional methods struggle to fully explore the variation of user preferences at variable time intervals. To tackle these limitations, we propose a Multi-Modal Temporal Knowledge Graph-aware Sub-graph Embedding approach (Mandari). We first construct a novel Multi-Modal Temporal Knowledge Graph. Based on the proposed knowledge graph, we integrate multi-modal information and leverage the graph attention network to calculate sub-graph prediction probability. Next, we implement a temporal knowledge mining method to model the segmentation and periodicity of user check-in and obtain temporal prediction probability. Finally, we fuse temporal prediction probability with the previous sub-graph prediction probability to obtain the final result. Extensive experiments demonstrate that our approach outperforms existing state-of-the-art methods.
面向Next-POI推荐的多模态时间知识图感知子图嵌入
next - poi推荐旨在从用户登记序列中探索预测下一个可能访问的位置。现有的方法往往难以对多模态数据与用户选择的隐式关联进行建模。此外,传统方法难以充分探索用户偏好在可变时间间隔内的变化。为了解决这些限制,我们提出了一种多模态时间知识图感知子图嵌入方法(Mandari)。我们首先构造了一个新的多模态时间知识图。在提出的知识图基础上,整合多模态信息,利用图关注网络计算子图预测概率。其次,我们实现了一种时间知识挖掘方法,对用户签入的分割和周期性进行建模,并获得时间预测概率。最后,将时间预测概率与之前的子图预测概率进行融合,得到最终结果。大量的实验表明,我们的方法优于现有的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信