Applying machine learning techniques to mine ventilation control systems

A. Kashnikov, L. Levin
{"title":"Applying machine learning techniques to mine ventilation control systems","authors":"A. Kashnikov, L. Levin","doi":"10.1109/SCM.2017.7970595","DOIUrl":null,"url":null,"abstract":"The purpose of the research is determination of mine ventilation system regulators positions providing required airflow on ventilated directions. Currently regulators positions are set iteratively that causes hunting. It is proposed to use historical data of the system for defining regulators functional dependencies on required airflow values with consideration of temporal variability of a ventilation network. The problem is solved by a regression model based on neural networks. Consequently, a set of model parameters is defined and the control algorithm of the system is modified for using a historical data set.","PeriodicalId":315574,"journal":{"name":"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCM.2017.7970595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The purpose of the research is determination of mine ventilation system regulators positions providing required airflow on ventilated directions. Currently regulators positions are set iteratively that causes hunting. It is proposed to use historical data of the system for defining regulators functional dependencies on required airflow values with consideration of temporal variability of a ventilation network. The problem is solved by a regression model based on neural networks. Consequently, a set of model parameters is defined and the control algorithm of the system is modified for using a historical data set.
机器学习技术在矿井通风控制系统中的应用
研究的目的是确定矿井通风系统调节器在通风方向上提供所需气流的位置。目前,监管机构的职位是迭代设置的,这导致了猎杀。建议使用系统的历史数据来定义调节器对所需气流值的功能依赖关系,同时考虑通风网络的时间变异性。采用基于神经网络的回归模型解决了这一问题。因此,定义了一组模型参数,并修改了系统的控制算法以使用历史数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信