Automatic Metadata Extraction Incorporating Visual Features from Scanned Electronic Theses and Dissertations

Muntabir Hasan Choudhury, Himarsha R. Jayanetti, Jian Wu, William A. Ingram, E. Fox
{"title":"Automatic Metadata Extraction Incorporating Visual Features from Scanned Electronic Theses and Dissertations","authors":"Muntabir Hasan Choudhury, Himarsha R. Jayanetti, Jian Wu, William A. Ingram, E. Fox","doi":"10.1109/JCDL52503.2021.00066","DOIUrl":null,"url":null,"abstract":"Electronic Theses and Dissertations (ETDs) contain domain knowledge that can be used for many digital library tasks, such as analyzing citation networks and predicting research trends. Automatic metadata extraction is important to build scalable digital library search engines. Most existing methods are designed for born-digital documents such as GROBID, CERMINE, and ParsCit, so they often fail to extract metadata from scanned documents such as for ETDs. Traditional sequence tagging methods mainly rely on text-based features. In this paper, we propose a conditional random field (CRF) model that combines text-based and visual features. To verify the robustness of our model, we extended an existing corpus and created a new ground truth corpus consisting of 500 ETD cover pages with human validated metadata. Our experiments show that CRF with visual features outperformed both a heuristic baseline and a CRF model with only text-based features. The proposed model achieved 81.3%-96% F1 measure on seven metadata fields. The data and source code are publicly available on Google Drive11httns://tinvurl.com/y8kxzwrp and a GitHub repository22https://github.com/lamps-lab/ETDMiner/tree/master/etd_crf, respectively.","PeriodicalId":112400,"journal":{"name":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCDL52503.2021.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Electronic Theses and Dissertations (ETDs) contain domain knowledge that can be used for many digital library tasks, such as analyzing citation networks and predicting research trends. Automatic metadata extraction is important to build scalable digital library search engines. Most existing methods are designed for born-digital documents such as GROBID, CERMINE, and ParsCit, so they often fail to extract metadata from scanned documents such as for ETDs. Traditional sequence tagging methods mainly rely on text-based features. In this paper, we propose a conditional random field (CRF) model that combines text-based and visual features. To verify the robustness of our model, we extended an existing corpus and created a new ground truth corpus consisting of 500 ETD cover pages with human validated metadata. Our experiments show that CRF with visual features outperformed both a heuristic baseline and a CRF model with only text-based features. The proposed model achieved 81.3%-96% F1 measure on seven metadata fields. The data and source code are publicly available on Google Drive11httns://tinvurl.com/y8kxzwrp and a GitHub repository22https://github.com/lamps-lab/ETDMiner/tree/master/etd_crf, respectively.
自动元数据提取结合视觉特征从扫描电子论文和学位论文
电子论文和学位论文(ETDs)包含可用于许多数字图书馆任务的领域知识,例如分析引文网络和预测研究趋势。自动元数据提取对于构建可扩展的数字图书馆搜索引擎至关重要。大多数现有方法都是为原生数字文档(如GROBID、CERMINE和ParsCit)设计的,因此它们通常无法从扫描文档(如etd)中提取元数据。传统的序列标注方法主要依赖于基于文本的特征。本文提出了一种结合文本特征和视觉特征的条件随机场(CRF)模型。为了验证我们模型的鲁棒性,我们扩展了一个现有的语料库,并创建了一个新的基础真理语料库,该语料库由500个ETD封面页组成,其中包含经过人类验证的元数据。我们的实验表明,具有视觉特征的CRF模型优于启发式基线和仅基于文本特征的CRF模型。该模型在7个元数据字段上的F1度量值达到81.3% ~ 96%。数据和源代码分别在Google Drive11httns://tinvurl.com/y8kxzwrp和GitHub repository22https://github.com/lamps-lab/ETDMiner/tree/master/etd_crf上公开提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信