Towards lightweight deep neural network for smart agriculture on embedded systems

Pengwei Du, T. Polonelli, M. Magno, Zhiyuan Cheng
{"title":"Towards lightweight deep neural network for smart agriculture on embedded systems","authors":"Pengwei Du, T. Polonelli, M. Magno, Zhiyuan Cheng","doi":"10.1109/SAS54819.2022.9881382","DOIUrl":null,"url":null,"abstract":"Agriculture is the pillar industry for human survival. However, various diseases threaten the health of crops and lead to a decrease in yield. Industry 4.0 is making strides in plant illness prevention and detection, other than supporting farmers to improve plantations’ income. To prevent crop diseases in time, this paper proposes, implements, and evaluates a low-power smart camera. It features a lightweight neural network to verify and monitor the growth status of crops. The proposed tiny model features optimized complexity, to be deployed in milliwatt power microcontrollers, and high accuracy. Experimental results show that our work reaches 99% accuracy on a 4-classes dataset and more than 96% for a 10 classes dataset. The compact model size (139 kB) and low complexity enable ultra-low power consumption (2.63 mW per hour) on the battery-powered Sony Spresense platform, which features a six-core ARM Cortex-M4F.","PeriodicalId":129732,"journal":{"name":"2022 IEEE Sensors Applications Symposium (SAS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS54819.2022.9881382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Agriculture is the pillar industry for human survival. However, various diseases threaten the health of crops and lead to a decrease in yield. Industry 4.0 is making strides in plant illness prevention and detection, other than supporting farmers to improve plantations’ income. To prevent crop diseases in time, this paper proposes, implements, and evaluates a low-power smart camera. It features a lightweight neural network to verify and monitor the growth status of crops. The proposed tiny model features optimized complexity, to be deployed in milliwatt power microcontrollers, and high accuracy. Experimental results show that our work reaches 99% accuracy on a 4-classes dataset and more than 96% for a 10 classes dataset. The compact model size (139 kB) and low complexity enable ultra-low power consumption (2.63 mW per hour) on the battery-powered Sony Spresense platform, which features a six-core ARM Cortex-M4F.
面向嵌入式系统智能农业的轻量级深度神经网络研究
农业是人类赖以生存的支柱产业。然而,各种病害威胁着作物的健康,导致产量下降。除了支持农民提高种植园收入外,工业4.0还在植物病害预防和检测方面取得了长足进步。为了及时预防作物病害,本文提出并实现了一种低功耗智能摄像机。它具有一个轻量级的神经网络来验证和监测作物的生长状态。所提出的微型模型具有优化的复杂性,可部署在毫瓦功率微控制器中,并且精度高。实验结果表明,我们的工作在4类数据集上达到99%的准确率,在10类数据集上达到96%以上的准确率。紧凑的模型尺寸(139 kB)和低复杂性使电池供电的索尼Spresense平台具有超低功耗(每小时2.63兆瓦),该平台具有六核ARM Cortex-M4F。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信