Evolving variable stiffness fiber patterns for multi-shape robotic sheets

Atoosa Parsa, M. Goyal, Maggy Lambo, Bilige Yang, J. Bongard, Rebecca Kramer‐Bottiglio
{"title":"Evolving variable stiffness fiber patterns for multi-shape robotic sheets","authors":"Atoosa Parsa, M. Goyal, Maggy Lambo, Bilige Yang, J. Bongard, Rebecca Kramer‐Bottiglio","doi":"10.1109/RoboSoft55895.2023.10121924","DOIUrl":null,"url":null,"abstract":"Thin, planar sheets can be programmed to morph into complex shapes through stretching and out-of-plane bending, with applicability to shape-shifting soft robots. One way to make a morphing sheet is to use variable stiffness fibers that can modulate their tensile stiffness attached to the surface of a volumetrically expanding sheet. Adjusting local stiffnesses via tensile fiber jamming during sheet expansion allows control of the local shape tensor. However, finding the fiber placements and jamming policies to achieve a set of desired shapes is a non-trivial inverse design problem. We present an additive inverse design framework using an evolutionary algorithm to find optimal jamming fiber patterns to match multiple target shapes. We demonstrate the utility of our optimization pipeline with two input curvature pairs: 1) cylinder and sphere curvatures and 2) simple saddle and monkey saddle curvatures. Our method is able to find a diverse set of sufficient solutions in both cases. By incorporating hardware constraints into our optimization pipeline, we further explore the transfer of evolved solutions from simulation to reality.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoboSoft55895.2023.10121924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thin, planar sheets can be programmed to morph into complex shapes through stretching and out-of-plane bending, with applicability to shape-shifting soft robots. One way to make a morphing sheet is to use variable stiffness fibers that can modulate their tensile stiffness attached to the surface of a volumetrically expanding sheet. Adjusting local stiffnesses via tensile fiber jamming during sheet expansion allows control of the local shape tensor. However, finding the fiber placements and jamming policies to achieve a set of desired shapes is a non-trivial inverse design problem. We present an additive inverse design framework using an evolutionary algorithm to find optimal jamming fiber patterns to match multiple target shapes. We demonstrate the utility of our optimization pipeline with two input curvature pairs: 1) cylinder and sphere curvatures and 2) simple saddle and monkey saddle curvatures. Our method is able to find a diverse set of sufficient solutions in both cases. By incorporating hardware constraints into our optimization pipeline, we further explore the transfer of evolved solutions from simulation to reality.
多形状机器人板材变刚度纤维花纹的演化
薄的平面薄片可以通过编程通过拉伸和面外弯曲变成复杂的形状,适用于变形的软机器人。制造变形片的一种方法是使用可变刚度纤维,这种纤维可以调节附着在体积膨胀片表面的拉伸刚度。在板材膨胀过程中,通过拉伸纤维干扰调节局部刚度,可以控制局部形状张量。然而,找到光纤的位置和干扰策略以实现一组所需的形状是一个非平凡的反设计问题。我们提出了一种使用进化算法的加性逆设计框架,以找到匹配多个目标形状的最佳干扰光纤模式。我们用两种曲率对来演示优化管道的效用:1)圆柱曲率和球面曲率,2)简单鞍形曲率和猴形曲率。我们的方法能够在这两种情况下找到一组不同的充分解。通过将硬件约束纳入我们的优化管道,我们进一步探索从模拟到现实的进化解决方案的转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信