A novel neural network approach to gene clustering

Wei Hao, Songnian Yu
{"title":"A novel neural network approach to gene clustering","authors":"Wei Hao, Songnian Yu","doi":"10.1109/ICET.2005.1558884","DOIUrl":null,"url":null,"abstract":"Clu.stering is a very usefidl and important technique for analyzing gene eJ)pression data. The self organizing nmap has shown to be one of the mlost useful clutstering algorithms. Hlowever, its applicability is limited by the fact that sonme knowledge abotut the clata is required prior to clustering. In this paper we introdutce a novel model of SOM, called growing hierar-chical self-organizing map (GIISOM) to c luster gene expression data. The training and growth process of the GI-ISOM is entirely dcata driven, requiiring no prior knowiledge or estinmates for p)aramneter specification, thtus helps to fintd not only the cappropriate number of cluisters bult also the hiera,'chical relations in the clata set. To validate oulr ressults, we employed a novel validation techniquie, wvhich is k-nown as figure of merit (FOM).","PeriodicalId":222828,"journal":{"name":"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2005.1558884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clu.stering is a very usefidl and important technique for analyzing gene eJ)pression data. The self organizing nmap has shown to be one of the mlost useful clutstering algorithms. Hlowever, its applicability is limited by the fact that sonme knowledge abotut the clata is required prior to clustering. In this paper we introdutce a novel model of SOM, called growing hierar-chical self-organizing map (GIISOM) to c luster gene expression data. The training and growth process of the GI-ISOM is entirely dcata driven, requiiring no prior knowiledge or estinmates for p)aramneter specification, thtus helps to fintd not only the cappropriate number of cluisters bult also the hiera,'chical relations in the clata set. To validate oulr ressults, we employed a novel validation techniquie, wvhich is k-nown as figure of merit (FOM).
一种新的神经网络基因聚类方法
健身房。序列分析是一种非常有用和重要的基因表达分析技术。自组织nmap已被证明是最有用的聚类算法之一。然而,它的适用性受到限制,因为在聚类之前需要一些关于数据的知识。在本文中,我们介绍了一种新的SOM模型,称为生长层次化学自组织图谱(GIISOM)来聚集基因表达数据。GI-ISOM的训练和成长过程完全是数据驱动的,不需要事先的知识或对参数规格的估计,这不仅有助于找到适当数量的聚类,还有助于找到数据集中的层次、化学关系。为了验证我们的结果,我们采用了一种新的验证技术,即所谓的价值图(FOM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信