Factor Based Clustering

Apollon Fragkiskos, E. Bauman
{"title":"Factor Based Clustering","authors":"Apollon Fragkiskos, E. Bauman","doi":"10.2139/ssrn.3089985","DOIUrl":null,"url":null,"abstract":"We propose a novel approach to cluster funds based on their factor exposures. The approach uses investment returns as input data and calculates similarity scores across funds, which are then used to form clusters. The derived clusters avoid common pitfalls that correlation based or other cluster methods fall into. They can be used as peer group alternatives to what vendors provide or to further refine existing categories that might be too obscure to make sense of. When tested against long/short equity funds, we find that we can form clusters with relatively high levels of stability across time.","PeriodicalId":340455,"journal":{"name":"Institute for Quantitative Research in Finance 2017 (Q-Group) (Archive)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Institute for Quantitative Research in Finance 2017 (Q-Group) (Archive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3089985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel approach to cluster funds based on their factor exposures. The approach uses investment returns as input data and calculates similarity scores across funds, which are then used to form clusters. The derived clusters avoid common pitfalls that correlation based or other cluster methods fall into. They can be used as peer group alternatives to what vendors provide or to further refine existing categories that might be too obscure to make sense of. When tested against long/short equity funds, we find that we can form clusters with relatively high levels of stability across time.
基于因子的聚类
本文提出了一种基于因子暴露的基金聚类方法。该方法使用投资回报作为输入数据,并计算各基金的相似性得分,然后将其用于形成集群。派生的聚类避免了基于相关性或其他聚类方法会陷入的常见陷阱。它们可以用作供应商提供的对等组替代方案,或者进一步细化可能太模糊而无法理解的现有类别。当对多/空股票基金进行测试时,我们发现我们可以形成具有相对较高稳定性水平的集群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信