Probabilistic term variant generator for biomedical terms

Yoshimasa Tsuruoka, Junichi Tsujii
{"title":"Probabilistic term variant generator for biomedical terms","authors":"Yoshimasa Tsuruoka, Junichi Tsujii","doi":"10.1145/860435.860467","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm to generate possible variants for biomedical terms. The algorithm gives each variant its generation probability representing its plausibility, which is potentially useful for query and dictionary expansions. The probabilistic rules for generating variants are automatically learned from raw texts using an existing abbreviation extraction technique. Our method, therefore, requires no linguistic knowledge or labor-intensive natural language resource. We conducted an experiment using 83,142 MEDLINE abstracts for rule induction and 18,930 abstracts for testing. The results indicate that our method will significantly increase the number of retrieved documents for long biomedical terms.","PeriodicalId":209809,"journal":{"name":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/860435.860467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

This paper presents an algorithm to generate possible variants for biomedical terms. The algorithm gives each variant its generation probability representing its plausibility, which is potentially useful for query and dictionary expansions. The probabilistic rules for generating variants are automatically learned from raw texts using an existing abbreviation extraction technique. Our method, therefore, requires no linguistic knowledge or labor-intensive natural language resource. We conducted an experiment using 83,142 MEDLINE abstracts for rule induction and 18,930 abstracts for testing. The results indicate that our method will significantly increase the number of retrieved documents for long biomedical terms.
生物医学术语的概率术语变体生成器
本文提出了一种生成生物医学术语可能变体的算法。该算法为每个变体提供了表示其合理性的生成概率,这对于查询和字典扩展可能很有用。使用现有的缩写提取技术,从原始文本中自动学习生成变体的概率规则。因此,我们的方法不需要语言知识或劳动密集型的自然语言资源。我们进行了一项实验,使用83,142篇MEDLINE摘要进行规则归纳,使用18,930篇摘要进行测试。结果表明,我们的方法将显著增加长生物医学术语的检索数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信