Anomaly detection based on data stream monitoring and prediction with improved Gaussian process regression algorithm

Jingyue Pang, Datong Liu, H. Liao, Yu Peng, Xiyuan Peng
{"title":"Anomaly detection based on data stream monitoring and prediction with improved Gaussian process regression algorithm","authors":"Jingyue Pang, Datong Liu, H. Liao, Yu Peng, Xiyuan Peng","doi":"10.1109/ICPHM.2014.7036394","DOIUrl":null,"url":null,"abstract":"Condition monitoring has gradually become the necessary part of the diagnostics and prognostics for the complex systems. Especially, with the rapid development of data acquisition and communication technology, the appearing of large scale data set and data stream brings great challenges to model and process the condition monitoring data As a result, anomaly detection of the streaming monitoring data attracts more attention in the fields of prognostics and health management (PHM). Hence, in this study, Gaussian process regression (GPR) is applied for the abnormal detection in data stream; and on this basis a real-time abnormal detection method is proposed based on the improved anomaly detection and mitigation (IADAM) strategy and GPR which realizes incremental detecting for future data samples and requires no pre-classification labels of anomalies. Anomaly detection tested on an artificial data set and actual mobile traffic data set indicates the effectiveness and reasonability of IADAM-GPR model compared with naïve and Multilayer Perceptron (MLP) models.","PeriodicalId":376942,"journal":{"name":"2014 International Conference on Prognostics and Health Management","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Prognostics and Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2014.7036394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Condition monitoring has gradually become the necessary part of the diagnostics and prognostics for the complex systems. Especially, with the rapid development of data acquisition and communication technology, the appearing of large scale data set and data stream brings great challenges to model and process the condition monitoring data As a result, anomaly detection of the streaming monitoring data attracts more attention in the fields of prognostics and health management (PHM). Hence, in this study, Gaussian process regression (GPR) is applied for the abnormal detection in data stream; and on this basis a real-time abnormal detection method is proposed based on the improved anomaly detection and mitigation (IADAM) strategy and GPR which realizes incremental detecting for future data samples and requires no pre-classification labels of anomalies. Anomaly detection tested on an artificial data set and actual mobile traffic data set indicates the effectiveness and reasonability of IADAM-GPR model compared with naïve and Multilayer Perceptron (MLP) models.
基于改进高斯过程回归算法的数据流监测与预测异常检测
状态监测已逐渐成为复杂系统诊断和预测的必要组成部分。特别是随着数据采集和通信技术的快速发展,大规模数据集和数据流的出现给状态监测数据的建模和处理带来了巨大的挑战,因此对流监测数据的异常检测在预测和健康管理领域受到越来越多的关注。因此,本研究将高斯过程回归(GPR)应用于数据流的异常检测;在此基础上,提出了一种基于改进异常检测与缓解(IADAM)策略和探地雷达的实时异常检测方法,实现了对未来数据样本的增量检测,且不需要对异常进行预分类标记。在人工数据集和实际移动交通数据集上进行的异常检测测试表明,IADAM-GPR模型与naïve和Multilayer Perceptron (MLP)模型相比具有有效性和合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信