Convolutional neural network for pothole detection in different road and weather conditions

Qusai Gazawy, Selim Buyrukoğlu, Yıldıran Yılmaz
{"title":"Convolutional neural network for pothole detection in different road and weather conditions","authors":"Qusai Gazawy, Selim Buyrukoğlu, Yıldıran Yılmaz","doi":"10.51271/jceees-0001","DOIUrl":null,"url":null,"abstract":"Aims: To propose a deep learning algorithm for pothole detection and compare the performance of Sigmoid and Softmax activation functions in the creation of Convolutional Neural Network (CNN) algorithms.\nMethods: Three different datasets were used to justify the robustness of the CNN model in detecting dry and wet potholes. The CNN algorithms were created separately using the Sigmoid and Softmax activation functions.\nResults: The CNN algorithm using the Sigmoid function achieved higher accuracy scores than the CNN algorithm using the Softmax function. Specifically, the Sigmoid algorithm achieved accuracy scores of 91%, 96%, and 83% over datasets 1, 2, and 3, respectively, while the Softmax algorithm achieved scores of 81%, 96%, and 85% over the same datasets.\nConclusion: The results of this study suggest that the CNN algorithm using the Sigmoid activation function is more robust and effective in detecting pothole images compared to the CNN algorithm using the Softmax activation function.\n","PeriodicalId":383582,"journal":{"name":"Journal of Computer & Electrical and Electronics Engineering Sciences","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer & Electrical and Electronics Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51271/jceees-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: To propose a deep learning algorithm for pothole detection and compare the performance of Sigmoid and Softmax activation functions in the creation of Convolutional Neural Network (CNN) algorithms. Methods: Three different datasets were used to justify the robustness of the CNN model in detecting dry and wet potholes. The CNN algorithms were created separately using the Sigmoid and Softmax activation functions. Results: The CNN algorithm using the Sigmoid function achieved higher accuracy scores than the CNN algorithm using the Softmax function. Specifically, the Sigmoid algorithm achieved accuracy scores of 91%, 96%, and 83% over datasets 1, 2, and 3, respectively, while the Softmax algorithm achieved scores of 81%, 96%, and 85% over the same datasets. Conclusion: The results of this study suggest that the CNN algorithm using the Sigmoid activation function is more robust and effective in detecting pothole images compared to the CNN algorithm using the Softmax activation function.
卷积神经网络在不同道路和天气条件下的坑穴检测
目的:提出一种凹坑检测的深度学习算法,并比较Sigmoid和Softmax激活函数在卷积神经网络(CNN)算法创建中的性能。方法:使用三个不同的数据集来证明CNN模型在检测干坑和湿坑方面的鲁棒性。CNN算法分别使用Sigmoid和Softmax激活函数创建。结果:使用Sigmoid函数的CNN算法比使用Softmax函数的CNN算法获得了更高的准确率分数。具体来说,Sigmoid算法在数据集1、2和3上的准确率分别为91%、96%和83%,而Softmax算法在相同的数据集上的准确率分别为81%、96%和85%。结论:本研究结果表明,与使用Softmax激活函数的CNN算法相比,使用Sigmoid激活函数的CNN算法在坑洼图像检测方面具有更强的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信