Remembrance of transistors past: Compact model parameter extraction using bayesian inference and incomplete new measurements

Li Yu, S. Saxena, C. Hess, I. Elfadel, D. Antoniadis, D. Boning
{"title":"Remembrance of transistors past: Compact model parameter extraction using bayesian inference and incomplete new measurements","authors":"Li Yu, S. Saxena, C. Hess, I. Elfadel, D. Antoniadis, D. Boning","doi":"10.1145/2593069.2593201","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel MOSFET parameter extraction method to enable early technology evaluation. The distinguishing feature of the proposed method is that it enables the extraction of an entire set of MOSFET model parameters using limited and incomplete IV measurements from on-chip monitor circuits. An important step in this method is the use of maximum-a-posteriori estimation where past measurements of transistors from various technologies are used to learn a prior distribution and its uncertainty matrix for the parameters of the target technology. The framework then utilizes Bayesian inference to facilitate extraction using a very small set of additional measurements. The proposed method is validated using various past technologies and post-silicon measurements for a commercial 28-nm process. The proposed extraction could also be used to characterize the statistical variations of MOSFETs with the significant benefit that some constraints required by the backward propagation of variance (BPV) method are relaxed.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper, we propose a novel MOSFET parameter extraction method to enable early technology evaluation. The distinguishing feature of the proposed method is that it enables the extraction of an entire set of MOSFET model parameters using limited and incomplete IV measurements from on-chip monitor circuits. An important step in this method is the use of maximum-a-posteriori estimation where past measurements of transistors from various technologies are used to learn a prior distribution and its uncertainty matrix for the parameters of the target technology. The framework then utilizes Bayesian inference to facilitate extraction using a very small set of additional measurements. The proposed method is validated using various past technologies and post-silicon measurements for a commercial 28-nm process. The proposed extraction could also be used to characterize the statistical variations of MOSFETs with the significant benefit that some constraints required by the backward propagation of variance (BPV) method are relaxed.
回顾过去的晶体管:使用贝叶斯推理和不完全新测量的紧凑模型参数提取
在本文中,我们提出了一种新的MOSFET参数提取方法,以实现早期技术评估。所提出的方法的显著特征是,它能够从片上监控电路中使用有限和不完整的IV测量提取一整套MOSFET模型参数。该方法的一个重要步骤是使用最大后验估计,其中使用来自各种技术的晶体管的过去测量来学习目标技术参数的先验分布及其不确定性矩阵。然后,该框架利用贝叶斯推理来使用非常小的附加测量集来促进提取。采用各种过去的技术和商业28纳米工艺的后硅测量验证了所提出的方法。所提出的提取方法还可以用来表征mosfet的统计变化,其显著的好处是消除了方差反向传播(BPV)方法所要求的一些约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信