{"title":"Human Activity Recognition Using Temporal Convolutional Network","authors":"Nitin Nair, Chinchu Thomas, D. Jayagopi","doi":"10.1145/3266157.3266221","DOIUrl":null,"url":null,"abstract":"Human activity recognition using wearable sensors is an area of interest for various domains like healthcare, surveillance etc. Various approaches have been used to solve the problem of activity recognition. Recently deep learning methods like RNNs and LSTMs have been used for this task. But these architectures are unable to capture long term dependencies in time series data. In this work, we propose to use the Temporal Convolutional Network architecture for recognizing the activities from the sensor data obtained from a smartphone. Due to the potential of the architecture to take variable length input sequences along with significantly better ability to capture long term dependencies, it performs better than other deep learning methods. The results of the proposed methods shows an improved performance over the existing methods.","PeriodicalId":151070,"journal":{"name":"Proceedings of the 5th International Workshop on Sensor-based Activity Recognition and Interaction","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Workshop on Sensor-based Activity Recognition and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3266157.3266221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
Human activity recognition using wearable sensors is an area of interest for various domains like healthcare, surveillance etc. Various approaches have been used to solve the problem of activity recognition. Recently deep learning methods like RNNs and LSTMs have been used for this task. But these architectures are unable to capture long term dependencies in time series data. In this work, we propose to use the Temporal Convolutional Network architecture for recognizing the activities from the sensor data obtained from a smartphone. Due to the potential of the architecture to take variable length input sequences along with significantly better ability to capture long term dependencies, it performs better than other deep learning methods. The results of the proposed methods shows an improved performance over the existing methods.