Optimization of Energy management using a particle swarm optimization for hybrid renewable energy sources

F. Menzri, T. Boutabba, I. Benlaloui, D. Khamari
{"title":"Optimization of Energy management using a particle swarm optimization for hybrid renewable energy sources","authors":"F. Menzri, T. Boutabba, I. Benlaloui, D. Khamari","doi":"10.1109/ICAEE53772.2022.9962065","DOIUrl":null,"url":null,"abstract":"This study investigated a stand-alone hybrid renewable energy system’s optimum energy management system. The proposed optimization method is called Particle swarm optimization and it is an evolutionary computing methodology (PSO). The proposed technique (PSO) for managing the energy system is to calculate the amount of power that the battery must generate and that is through adjusting the values PI controller gains while taking account the amount of power generated by the significant resources (in our case PV and wind).","PeriodicalId":206584,"journal":{"name":"2022 2nd International Conference on Advanced Electrical Engineering (ICAEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Advanced Electrical Engineering (ICAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEE53772.2022.9962065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated a stand-alone hybrid renewable energy system’s optimum energy management system. The proposed optimization method is called Particle swarm optimization and it is an evolutionary computing methodology (PSO). The proposed technique (PSO) for managing the energy system is to calculate the amount of power that the battery must generate and that is through adjusting the values PI controller gains while taking account the amount of power generated by the significant resources (in our case PV and wind).
基于粒子群优化的混合可再生能源能源管理优化
研究了一种独立混合可再生能源系统的最优能量管理系统。提出的优化方法称为粒子群优化,是一种进化计算方法。所提出的管理能源系统的技术(PSO)是计算电池必须产生的电量,这是通过调整PI控制器获得的值,同时考虑到重要资源(在我们的例子中是光伏和风能)产生的电量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信