Method for Efficient CPU-GPU Streaming for Walkthrough of Full Motion Lightfield Video

Floyd M. Chitalu, Babis Koniaris, Kenny Mitchell
{"title":"Method for Efficient CPU-GPU Streaming for Walkthrough of Full Motion Lightfield Video","authors":"Floyd M. Chitalu, Babis Koniaris, Kenny Mitchell","doi":"10.1145/3150165.3150173","DOIUrl":null,"url":null,"abstract":"Lightfield video, as a high-dimensional function, is very demanding in terms of storage. As such, lightfield video data, even in a compressed form, do not typically fit in GPU or main memory unless the capture area, resolution or duration is sufficiently small. Additionally, latency minimization--critical for viewer comfort in use-cases such as virtual reality--places further constraints in many compression schemes. In this paper, we propose a scalable method for streaming lightfield video, parameterized on viewer location and time, that efficiently handles RAM-to-GPU memory transfers of lightfield video in a compressed form, utilizing the GPU architecture for reduction of latency. We demonstrate the effectiveness of our method in a variety of compressed animated lightfield datasets.","PeriodicalId":412591,"journal":{"name":"Proceedings of the 14th European Conference on Visual Media Production (CVMP 2017)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th European Conference on Visual Media Production (CVMP 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3150165.3150173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Lightfield video, as a high-dimensional function, is very demanding in terms of storage. As such, lightfield video data, even in a compressed form, do not typically fit in GPU or main memory unless the capture area, resolution or duration is sufficiently small. Additionally, latency minimization--critical for viewer comfort in use-cases such as virtual reality--places further constraints in many compression schemes. In this paper, we propose a scalable method for streaming lightfield video, parameterized on viewer location and time, that efficiently handles RAM-to-GPU memory transfers of lightfield video in a compressed form, utilizing the GPU architecture for reduction of latency. We demonstrate the effectiveness of our method in a variety of compressed animated lightfield datasets.
全运动光场视频演练的高效CPU-GPU流处理方法
光场视频作为一种高维函数,对存储的要求非常高。因此,光场视频数据,即使以压缩形式,通常也不适合GPU或主存储器,除非捕获区域,分辨率或持续时间足够小。此外,最小化延迟——在虚拟现实等用例中对观看者的舒适度至关重要——给许多压缩方案带来了进一步的限制。在本文中,我们提出了一种可扩展的光场视频流方法,参数化观众的位置和时间,有效地处理ram到GPU内存传输的压缩形式的光场视频,利用GPU架构来减少延迟。我们在各种压缩动画光场数据集中证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信