The minimum equivalent DNF problem and shortest implicants

C. Umans
{"title":"The minimum equivalent DNF problem and shortest implicants","authors":"C. Umans","doi":"10.1109/SFCS.1998.743506","DOIUrl":null,"url":null,"abstract":"We prove that the Minimum Equivalent DNF problem is /spl Sigma//sub 2//sup p/-complete, resolving a conjecture due to L.J. Stockmeyer (1976). The proof involves as an intermediate step a variant of a related problem in logic minimization, namely, that of finding the shortest implicant of a Boolean function. We also obtain certain results concerning the complexity of the shortest implicant problem that may be of independent interest. When the input is a formula, the shortest implicant problem is /spl Sigma//sub 2//sup p/-complete, and /spl Sigma//sub 2//sup p/-hard to approximate to within an n/sup 1/2-/spl epsiv// factor. When the input is a circuit, approximation is /spl Sigma//sub 2//sup p/-hard to within an n/sup 1-/spl epsiv// factor. However, when the input is a DNF formula, the shortest implicant problem cannot be /spl Sigma//sub 2//sup p/-complete unless /spl Sigma//sub 2//sup p/=NP[log/sup 2/n]/sup NP/.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"151","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 151

Abstract

We prove that the Minimum Equivalent DNF problem is /spl Sigma//sub 2//sup p/-complete, resolving a conjecture due to L.J. Stockmeyer (1976). The proof involves as an intermediate step a variant of a related problem in logic minimization, namely, that of finding the shortest implicant of a Boolean function. We also obtain certain results concerning the complexity of the shortest implicant problem that may be of independent interest. When the input is a formula, the shortest implicant problem is /spl Sigma//sub 2//sup p/-complete, and /spl Sigma//sub 2//sup p/-hard to approximate to within an n/sup 1/2-/spl epsiv// factor. When the input is a circuit, approximation is /spl Sigma//sub 2//sup p/-hard to within an n/sup 1-/spl epsiv// factor. However, when the input is a DNF formula, the shortest implicant problem cannot be /spl Sigma//sub 2//sup p/-complete unless /spl Sigma//sub 2//sup p/=NP[log/sup 2/n]/sup NP/.
最小等效DNF问题和最短隐含问题
我们证明了最小等效DNF问题是/spl Sigma//sub 2//sup p/-完备的,解决了L.J. Stockmeyer(1976)的一个猜想。作为中间步骤,证明涉及到逻辑最小化中一个相关问题的变体,即寻找布尔函数的最短隐含式。我们也得到了一些关于最短隐含问题的复杂性的结果,这可能是独立的兴趣。当输入是一个公式时,最短的隐含问题是/spl Sigma//sub 2//sup p/-完整的,而/spl Sigma//sub 2//sup p/-很难在n/sup 1/2-/spl epsiv//因子内近似。当输入是电路时,近似值为/spl Sigma//sub 2//sup p/-难以在n/sup 1-/spl epsiv//因子内。然而,当输入是DNF公式时,除非/spl Sigma//sub 2//sup p/=NP[log/sup 2/n]/sup NP/,否则最短隐含问题不可能是/spl Sigma//sub 2//sup p/-complete。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信