{"title":"The minimum equivalent DNF problem and shortest implicants","authors":"C. Umans","doi":"10.1109/SFCS.1998.743506","DOIUrl":null,"url":null,"abstract":"We prove that the Minimum Equivalent DNF problem is /spl Sigma//sub 2//sup p/-complete, resolving a conjecture due to L.J. Stockmeyer (1976). The proof involves as an intermediate step a variant of a related problem in logic minimization, namely, that of finding the shortest implicant of a Boolean function. We also obtain certain results concerning the complexity of the shortest implicant problem that may be of independent interest. When the input is a formula, the shortest implicant problem is /spl Sigma//sub 2//sup p/-complete, and /spl Sigma//sub 2//sup p/-hard to approximate to within an n/sup 1/2-/spl epsiv// factor. When the input is a circuit, approximation is /spl Sigma//sub 2//sup p/-hard to within an n/sup 1-/spl epsiv// factor. However, when the input is a DNF formula, the shortest implicant problem cannot be /spl Sigma//sub 2//sup p/-complete unless /spl Sigma//sub 2//sup p/=NP[log/sup 2/n]/sup NP/.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"151","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 151
Abstract
We prove that the Minimum Equivalent DNF problem is /spl Sigma//sub 2//sup p/-complete, resolving a conjecture due to L.J. Stockmeyer (1976). The proof involves as an intermediate step a variant of a related problem in logic minimization, namely, that of finding the shortest implicant of a Boolean function. We also obtain certain results concerning the complexity of the shortest implicant problem that may be of independent interest. When the input is a formula, the shortest implicant problem is /spl Sigma//sub 2//sup p/-complete, and /spl Sigma//sub 2//sup p/-hard to approximate to within an n/sup 1/2-/spl epsiv// factor. When the input is a circuit, approximation is /spl Sigma//sub 2//sup p/-hard to within an n/sup 1-/spl epsiv// factor. However, when the input is a DNF formula, the shortest implicant problem cannot be /spl Sigma//sub 2//sup p/-complete unless /spl Sigma//sub 2//sup p/=NP[log/sup 2/n]/sup NP/.