Classification of dynamic evolutions from satellitar image time series based on similarity measures

C. Vaduva, T. Costachioiu, C. Patrascu, I. Gavat, V. Lazarescu, M. Datcu
{"title":"Classification of dynamic evolutions from satellitar image time series based on similarity measures","authors":"C. Vaduva, T. Costachioiu, C. Patrascu, I. Gavat, V. Lazarescu, M. Datcu","doi":"10.1109/MULTI-TEMP.2011.6005068","DOIUrl":null,"url":null,"abstract":"With a continuous increase in the number of Earth Observation satellites, leading to the development of satellitar image time series (SITS), the number of algorithms for land cover analysis and monitoring has greatly expanded. This paper offers a new perspective in dynamic classification for SITS. Four similarity measures (correlation coefficient, Kullback-Leibler (KL) divergence, conditional information, normalized compression distance (NCD)) based on image pairs from the data are employed, resulting in a series of maps describing different types of changes observed in the original series. The proposed algorithm performs a classification of the newly developed time series using a Latent Dirichlet Allocation model (LDA). This statistical method was originally used for text classification, thus requiring a word, document, corpus analogy with the elements inside the image. The experimental results were computed using 11 Landsat images over the city of Bucharest and surrounding areas.","PeriodicalId":254778,"journal":{"name":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","volume":"16 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MULTI-TEMP.2011.6005068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With a continuous increase in the number of Earth Observation satellites, leading to the development of satellitar image time series (SITS), the number of algorithms for land cover analysis and monitoring has greatly expanded. This paper offers a new perspective in dynamic classification for SITS. Four similarity measures (correlation coefficient, Kullback-Leibler (KL) divergence, conditional information, normalized compression distance (NCD)) based on image pairs from the data are employed, resulting in a series of maps describing different types of changes observed in the original series. The proposed algorithm performs a classification of the newly developed time series using a Latent Dirichlet Allocation model (LDA). This statistical method was originally used for text classification, thus requiring a word, document, corpus analogy with the elements inside the image. The experimental results were computed using 11 Landsat images over the city of Bucharest and surrounding areas.
基于相似性测度的卫星影像时间序列动态演化分类
随着对地观测卫星数量的不断增加,卫星影像时间序列(sat)的发展,用于土地覆盖分析和监测的算法数量大大增加。本文为sit的动态分类提供了一个新的视角。采用基于数据图像对的四种相似性度量(相关系数、Kullback-Leibler (KL)散度、条件信息、归一化压缩距离(NCD)),生成一系列描述原始序列中观察到的不同类型变化的图。该算法使用潜狄利克雷分配模型(Latent Dirichlet Allocation model, LDA)对新开发的时间序列进行分类。这种统计方法最初用于文本分类,因此需要将单词、文档、语料库与图像内部的元素进行类比。实验结果是利用布加勒斯特市及周边地区的11张陆地卫星图像计算的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信