Efficient scene parsing by sampling unary potentials in a fully-connected CRF

L. Horne, J. Álvarez, M. Salzmann, N. Barnes
{"title":"Efficient scene parsing by sampling unary potentials in a fully-connected CRF","authors":"L. Horne, J. Álvarez, M. Salzmann, N. Barnes","doi":"10.1109/IVS.2015.7225786","DOIUrl":null,"url":null,"abstract":"Efficient, fully-connected CRF inference enables fast semantic labelling of images. However, this requires high-quality unary potentials to be computed, which is currently time-consuming. While some recent work attempts to address this issue by only computing a subset of unary potentials, a need remains for a simple, fast way to decide which unary potentials should be computed, without sacrificing accuracy. In particular, for embedded applications, a method which avoids time or memory-intensive operations is desired. In this paper, we introduce an approach to selecting good locations to compute unary potentials. We implement an efficient morphological approach to select a small proportion of pixel locations where unary potentials will be calculated. The speed of our labelling method allows us to directly search a large parameter space to optimize our method for a given task. We show that our method can achieve comparable accuracy to what can be achieved when all unary potentials are calculated, with significant time saving. Furthermore, we show that it is possible to tune our method to yield improved accuracy for certain classes of interest. We demonstrate this over multiple datasets representing challenging applications for our approach.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Efficient, fully-connected CRF inference enables fast semantic labelling of images. However, this requires high-quality unary potentials to be computed, which is currently time-consuming. While some recent work attempts to address this issue by only computing a subset of unary potentials, a need remains for a simple, fast way to decide which unary potentials should be computed, without sacrificing accuracy. In particular, for embedded applications, a method which avoids time or memory-intensive operations is desired. In this paper, we introduce an approach to selecting good locations to compute unary potentials. We implement an efficient morphological approach to select a small proportion of pixel locations where unary potentials will be calculated. The speed of our labelling method allows us to directly search a large parameter space to optimize our method for a given task. We show that our method can achieve comparable accuracy to what can be achieved when all unary potentials are calculated, with significant time saving. Furthermore, we show that it is possible to tune our method to yield improved accuracy for certain classes of interest. We demonstrate this over multiple datasets representing challenging applications for our approach.
在全连接CRF中通过采样一元电位进行高效场景解析
高效、全连接的CRF推理可以实现图像的快速语义标记。然而,这需要计算高质量的一元势,这目前是耗时的。虽然最近的一些工作试图通过只计算一元势的子集来解决这个问题,但仍然需要一种简单,快速的方法来决定应该计算哪些一元势,而不牺牲准确性。特别地,对于嵌入式应用程序,需要一种避免时间或内存密集型操作的方法。本文介绍了一种计算一元势的最佳位置选择方法。我们实现了一种有效的形态学方法来选择一小部分像素位置,其中一元电位将被计算。我们的标记方法的速度允许我们直接搜索一个大的参数空间来优化我们的方法为给定的任务。我们表明,我们的方法可以达到与计算所有一元势时可以达到的精度相当,并且节省了大量时间。此外,我们还展示了可以调整我们的方法以提高某些感兴趣的类的准确性。我们在多个数据集上演示了这一点,这些数据集代表了我们的方法具有挑战性的应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信