{"title":"Fabrication and Mechanical Property of Bioinspired Three Dimensional Amorphous Carbon Membrane As Anode in Lithium Ion Battery","authors":"Xueliang Wang, Z. Qu, Yaping Wang","doi":"10.1115/mnhmt2019-3990","DOIUrl":null,"url":null,"abstract":"\n 3D amorphous carbon-based membrane materials with continuous carbon skeleton were obtained from the fruit waste pomelo peel. The microstructure shows honeycomb in the transverse direction with pore size ranging from 50∼100 μm, while in the longitudinal direction, the inner surface of the carbon membrane shows unique structure, i.e., rollable ladders with carbon rungs twinkled intimately around the vertical stringers, which is considered to contribute to the mechanical strength of the carbon membrane. The tensile test indicates that prolonged yield stage is observed in the stress-strain curve of the membrane material, the corresponding fracture morphology showing different fracture surfaces, which confirms the alleviation of the applied load by changing the crack direction. In addition, the elastic modulus of the carbon membrane material is 140 MPa. The elongation of the yield period is considered to facilitate the structure stability of the carbon membrane material as anode material in Lithium-ion battery (LIBs).","PeriodicalId":331854,"journal":{"name":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/mnhmt2019-3990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
3D amorphous carbon-based membrane materials with continuous carbon skeleton were obtained from the fruit waste pomelo peel. The microstructure shows honeycomb in the transverse direction with pore size ranging from 50∼100 μm, while in the longitudinal direction, the inner surface of the carbon membrane shows unique structure, i.e., rollable ladders with carbon rungs twinkled intimately around the vertical stringers, which is considered to contribute to the mechanical strength of the carbon membrane. The tensile test indicates that prolonged yield stage is observed in the stress-strain curve of the membrane material, the corresponding fracture morphology showing different fracture surfaces, which confirms the alleviation of the applied load by changing the crack direction. In addition, the elastic modulus of the carbon membrane material is 140 MPa. The elongation of the yield period is considered to facilitate the structure stability of the carbon membrane material as anode material in Lithium-ion battery (LIBs).