{"title":"Comparing UWB Freespace Propagation and Indoor Propagation Including Non-ideal Antennas","authors":"J. Timmermann, M. Porebska, C. Sturm, W. Wiesbeck","doi":"10.1109/ICEAA.2007.4387232","DOIUrl":null,"url":null,"abstract":"Electromagnetic wave propagation of UWB signals can be interpreted as a superposition of narrowband electromagnetic wave propagation for a large set of frequencies. Since channel and antenna radiation patterns depend on frequency, describing and modeling the system transfer function of a UWB system including channel and antennas is more challenging compared to a narrowband system. This paper compares mathematical modeling of UWB freespace propagation to the more realistic case of UWB multipath propagation in indoor scenarios. Simulation results based on 3D Ray Tracing visualize the effect of both indoor channel and antennas on the UWB transmit signal in an indoor scenario, and finally, it is demonstrated, how signal distortions can be compensated by inverse filtering using an estimated system transfer function.","PeriodicalId":273595,"journal":{"name":"2007 International Conference on Electromagnetics in Advanced Applications","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Electromagnetics in Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAA.2007.4387232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Electromagnetic wave propagation of UWB signals can be interpreted as a superposition of narrowband electromagnetic wave propagation for a large set of frequencies. Since channel and antenna radiation patterns depend on frequency, describing and modeling the system transfer function of a UWB system including channel and antennas is more challenging compared to a narrowband system. This paper compares mathematical modeling of UWB freespace propagation to the more realistic case of UWB multipath propagation in indoor scenarios. Simulation results based on 3D Ray Tracing visualize the effect of both indoor channel and antennas on the UWB transmit signal in an indoor scenario, and finally, it is demonstrated, how signal distortions can be compensated by inverse filtering using an estimated system transfer function.