Caracterização do Consumo de Água Residencial utilizando Redes Neurais Artificiais

Lucas Nunes Monteiro, Caique Vendemiatti, Alexandre da Silva Simões, I. Diniz, F. P. Marafão
{"title":"Caracterização do Consumo de Água Residencial utilizando Redes Neurais Artificiais","authors":"Lucas Nunes Monteiro, Caique Vendemiatti, Alexandre da Silva Simões, I. Diniz, F. P. Marafão","doi":"10.17648/sbai-2019-111471","DOIUrl":null,"url":null,"abstract":": Water leaks in residential pipes are usually noticed only after 30 days, when the consumer receives the bill regarding the use of water and realizes that there was an atypical consumption on site. In such scenario, this article proposes the use of an artificial neural network to propose a methodology for identifying possible water leaks in residential buildings, thus allowing a better understanding and awareness of water consumption in the property. The proposed water monitoring system is based on four main stages: data acquisition; exploration and manipulation of data; data characterization and classification. Through the proposed system, from the classification / forecast of one week, it was possible to identify dates with abnormal consumption, which could be caused by excess water consumption or failures in water lines. dos dados e classificação. Por meio do sistema proposto, a partir da classificação/previsão de uma semana, foi possível identificar datas com consumos anormais, podendo ser causados por excesso de consumo de água ou avarias relacionadas a vazamentos.","PeriodicalId":130927,"journal":{"name":"Anais do 14º Simpósio Brasileiro de Automação Inteligente","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do 14º Simpósio Brasileiro de Automação Inteligente","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17648/sbai-2019-111471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Water leaks in residential pipes are usually noticed only after 30 days, when the consumer receives the bill regarding the use of water and realizes that there was an atypical consumption on site. In such scenario, this article proposes the use of an artificial neural network to propose a methodology for identifying possible water leaks in residential buildings, thus allowing a better understanding and awareness of water consumption in the property. The proposed water monitoring system is based on four main stages: data acquisition; exploration and manipulation of data; data characterization and classification. Through the proposed system, from the classification / forecast of one week, it was possible to identify dates with abnormal consumption, which could be caused by excess water consumption or failures in water lines. dos dados e classificação. Por meio do sistema proposto, a partir da classificação/previsão de uma semana, foi possível identificar datas com consumos anormais, podendo ser causados por excesso de consumo de água ou avarias relacionadas a vazamentos.
利用人工神经网络表征住宅用水量
:住宅水管漏水通常在30天后才会被发现,当用户收到水费账单时,才会意识到现场有非典型的消耗。在这种情况下,本文建议使用人工神经网络提出一种方法来识别住宅建筑中可能的漏水,从而更好地了解和认识物业的用水量。提出的水监测系统基于四个主要阶段:数据采集;数据的探索和操作;数据表征和分类。通过建议的系统,从一周的分类/预测,可以识别出异常消耗的日期,这可能是由于过量的水消耗或水管故障造成的。do do do do do do do do do do do do ?系统数据分类器(Por)、系统数据分类器(Por)、系统数据分类器(Por)、系统数据分类器(Por)、系统数据分类器(Por)、系统数据分类器(Por)、系统数据分类器(Por)、系统数据分类器(Por)、系统数据分类器(Por)、系统数据分类器(Por)、系统数据分类器(Por)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信