Improved bounds and algorithms for hypergraph two-coloring

J. Radhakrishnan, A. Srinivasan
{"title":"Improved bounds and algorithms for hypergraph two-coloring","authors":"J. Radhakrishnan, A. Srinivasan","doi":"10.1109/SFCS.1998.743519","DOIUrl":null,"url":null,"abstract":"We show that for all large n, every n-uniform hypergraph with at most 0.7/spl radic/(n/lnn)/spl times/2/sup n/ edges can be two-colored. We, in fact, present fast algorithms that output a proper two-coloring with high probability for such hypergraphs. We also derandomize and parallelize these algorithms, to derive NC/sup 1/ versions of these results. This makes progress on a problem of Erdos (1963), improving the previous-best bound of n/sup 1/3-0(1)//spl times/2/sup n/ due to Beck (1978). We further generalize this to a \"local\" version, improving on one of the first applications of the Lovasz Local Lemma.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We show that for all large n, every n-uniform hypergraph with at most 0.7/spl radic/(n/lnn)/spl times/2/sup n/ edges can be two-colored. We, in fact, present fast algorithms that output a proper two-coloring with high probability for such hypergraphs. We also derandomize and parallelize these algorithms, to derive NC/sup 1/ versions of these results. This makes progress on a problem of Erdos (1963), improving the previous-best bound of n/sup 1/3-0(1)//spl times/2/sup n/ due to Beck (1978). We further generalize this to a "local" version, improving on one of the first applications of the Lovasz Local Lemma.
超图二次着色的改进界和算法
我们证明了对于所有大n,每一个n-均匀超图最多有0.7/spl根/(n/lnn)/spl乘以/2/sup n/条边可以是双色的。事实上,我们提出了一种快速的算法,可以为这类超图输出一个高概率的适当的双着色。我们还对这些算法进行了非随机化和并行化处理,以得出这些结果的NC/sup /版本。这在Erdos(1963)的问题上取得了进展,改进了Beck(1978)提出的n/sup 1/3-0(1)//spl乘以/2/sup n/的先前最佳界。我们进一步将其推广到“局部”版本,改进了Lovasz局部引理的第一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信