CMOS-Memristive Sigmoid Activation Function

A. Kafizov, O. Krestinskaya
{"title":"CMOS-Memristive Sigmoid Activation Function","authors":"A. Kafizov, O. Krestinskaya","doi":"10.1109/coconet.2018.8476817","DOIUrl":null,"url":null,"abstract":"Sigmoid is a commonly used activation function in Artificial Neural Network (ANN). There are several digital, mixed signal and analog implementations of a sigmoid function; however the existing sigmoid circuits limit the scalability of ANN due to large on-chip area and high power consumption. In this paper, we address this issue and propose analog memristor-based sigmoid activation function implementation. The CMOS components of conventional gain adjustable voltage-mode sigmoid circuit are replaced with memristive element. The behavior of the modified sigmoid is simulated in SPICE and compared with the existing CMOS design. The simulation results show that memristor based sigmoid allow to reduce on-chip area and power dissipation by 20% and 5%, respectively. The gain of the sigmoid is increased by 20%, while the processing time remains unchanged.","PeriodicalId":250788,"journal":{"name":"2018 International Conference on Computing and Network Communications (CoCoNet)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Computing and Network Communications (CoCoNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/coconet.2018.8476817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sigmoid is a commonly used activation function in Artificial Neural Network (ANN). There are several digital, mixed signal and analog implementations of a sigmoid function; however the existing sigmoid circuits limit the scalability of ANN due to large on-chip area and high power consumption. In this paper, we address this issue and propose analog memristor-based sigmoid activation function implementation. The CMOS components of conventional gain adjustable voltage-mode sigmoid circuit are replaced with memristive element. The behavior of the modified sigmoid is simulated in SPICE and compared with the existing CMOS design. The simulation results show that memristor based sigmoid allow to reduce on-chip area and power dissipation by 20% and 5%, respectively. The gain of the sigmoid is increased by 20%, while the processing time remains unchanged.
cmos记忆型s型激活函数
Sigmoid是人工神经网络(ANN)中常用的激活函数。有几种sigmoid函数的数字、混合信号和模拟实现;然而,现有的s型电路由于片上面积大、功耗高,限制了人工神经网络的可扩展性。在本文中,我们解决了这个问题,并提出了基于模拟忆阻器的sigmoid激活函数实现。将传统增益可调电压型s型电路的CMOS元件替换为忆阻元件。在SPICE中模拟了改进的s型线的行为,并与现有的CMOS设计进行了比较。仿真结果表明,基于忆阻器的s型晶片可将片上面积和功耗分别降低20%和5%。s型线的增益提高了20%,而处理时间保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信