Mohammed Senoussaoui, Milton Orlando Sarria Paja, J. F. Santos, T. Falk
{"title":"Model Fusion for Multimodal Depression Classification and Level Detection","authors":"Mohammed Senoussaoui, Milton Orlando Sarria Paja, J. F. Santos, T. Falk","doi":"10.1145/2661806.2661819","DOIUrl":null,"url":null,"abstract":"Audio-visual emotion and mood disorder cues have been recently explored to develop tools to assist psychologists and psychiatrists in evaluating a patient's level of depression. In this paper, we present a number of different multimodal depression level predictors using a model fusion approach, in the context of the AVEC14 challenge. We show that an i-vector based representation for short term audio features contains useful information for depression classification and prediction. We also employed a classification step prior to regression to allow having different regression models depending on the presence or absence of depression. Our experiments show that a combination of our audio-based model and two other models based on the LGBP-TOP video features lead to an improvement of 4% over the baseline model proposed by the challenge organizers.","PeriodicalId":318508,"journal":{"name":"AVEC '14","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVEC '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2661806.2661819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55
Abstract
Audio-visual emotion and mood disorder cues have been recently explored to develop tools to assist psychologists and psychiatrists in evaluating a patient's level of depression. In this paper, we present a number of different multimodal depression level predictors using a model fusion approach, in the context of the AVEC14 challenge. We show that an i-vector based representation for short term audio features contains useful information for depression classification and prediction. We also employed a classification step prior to regression to allow having different regression models depending on the presence or absence of depression. Our experiments show that a combination of our audio-based model and two other models based on the LGBP-TOP video features lead to an improvement of 4% over the baseline model proposed by the challenge organizers.