Sentinel-1 Imagery Incorporating Machine Learning for Dryland Salinity Monitoring: A Case Study in Esperance, Western Australia

Qianqian Zhang, Zheng-Shu Zhou, P. Caccetta, J. Simons, Li Li
{"title":"Sentinel-1 Imagery Incorporating Machine Learning for Dryland Salinity Monitoring: A Case Study in Esperance, Western Australia","authors":"Qianqian Zhang, Zheng-Shu Zhou, P. Caccetta, J. Simons, Li Li","doi":"10.1109/IGARSS39084.2020.9323426","DOIUrl":null,"url":null,"abstract":"Due to the lack of a suitable theoretical model for simulating radar backscatter of soil based on salt content, we investigated a new method to exploit Sentinel-1 radar backscatters and polarimetric decomposition information for dryland soil salinity monitoring. Soil electrical conductivity (EC) was estimated using Sentinel-1 SAR imagery and field survey data combined with five machine learning models in Esperance, located in the southwest of Western Australia (SWWA). The performance of the five machine learning models was assessed and compared using the root-mean-square error (RMSE), the mean absolute error (MAE), and the correlation coefficient ($r$). The results revealed that the Random Forest Regression model (RFR) yielded the highest prediction performance ($\\text{RMSE}=2.89\\ S/m,\\ \\text{MAE}=1.90 S/m$, and $\\mathrm{r}=0.81$) and outperformed the other models. It can be concluded that the intensity images of VV and VH polarization of SAR imagery have the potential to predict EC of soils in SWWA.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to the lack of a suitable theoretical model for simulating radar backscatter of soil based on salt content, we investigated a new method to exploit Sentinel-1 radar backscatters and polarimetric decomposition information for dryland soil salinity monitoring. Soil electrical conductivity (EC) was estimated using Sentinel-1 SAR imagery and field survey data combined with five machine learning models in Esperance, located in the southwest of Western Australia (SWWA). The performance of the five machine learning models was assessed and compared using the root-mean-square error (RMSE), the mean absolute error (MAE), and the correlation coefficient ($r$). The results revealed that the Random Forest Regression model (RFR) yielded the highest prediction performance ($\text{RMSE}=2.89\ S/m,\ \text{MAE}=1.90 S/m$, and $\mathrm{r}=0.81$) and outperformed the other models. It can be concluded that the intensity images of VV and VH polarization of SAR imagery have the potential to predict EC of soils in SWWA.
结合机器学习的Sentinel-1图像用于旱地盐度监测:以西澳大利亚州埃斯佩兰斯为例
针对目前缺乏合适的基于盐分的土壤雷达后向散射模拟理论模型的问题,研究了利用Sentinel-1雷达后向散射和极化分解信息进行旱地土壤盐分监测的新方法。在西澳大利亚州西南部的Esperance,利用Sentinel-1 SAR图像和实地调查数据,结合五种机器学习模型,估算了土壤电导率(EC)。使用均方根误差(RMSE)、平均绝对误差(MAE)和相关系数(r$)对五种机器学习模型的性能进行评估和比较。结果表明,随机森林回归模型(RFR)的预测效果最好($\text{RMSE}=2.89\ S/m, $\text{MAE}=1.90 S/m$, $\ maththrm {r}=0.81$),优于其他模型。综上所示,SAR影像的VV和VH极化强度图像具有预测西南西南地区土壤EC的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信