Genetically-Optimized Electromagnetic Bandgap Structures for Efficient 5G Implementations

D. Karatzidis, Anestis Apostolidis, S. Amanatiadis, N. Kantartzis
{"title":"Genetically-Optimized Electromagnetic Bandgap Structures for Efficient 5G Implementations","authors":"D. Karatzidis, Anestis Apostolidis, S. Amanatiadis, N. Kantartzis","doi":"10.1109/mocast54814.2022.9837708","DOIUrl":null,"url":null,"abstract":"In this paper, we employ a systematic and accurate genetic optimization methodology, which incorporates a fast finite-element solver, in order to derive prototype electromagnetic bandgap structures with the maximum possible bandgap or multiple bandgap operational regions. All simulation results are, also, extracted by means of a commercial computational package, verifying thus the advantages of the technique. Finally, a realistic case as part of a 5G telecommunications scenario is examined, where one of the prototype geometries, so developed, is set as ground plane of a printed λ/2 dipole antenna.","PeriodicalId":122414,"journal":{"name":"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mocast54814.2022.9837708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we employ a systematic and accurate genetic optimization methodology, which incorporates a fast finite-element solver, in order to derive prototype electromagnetic bandgap structures with the maximum possible bandgap or multiple bandgap operational regions. All simulation results are, also, extracted by means of a commercial computational package, verifying thus the advantages of the technique. Finally, a realistic case as part of a 5G telecommunications scenario is examined, where one of the prototype geometries, so developed, is set as ground plane of a printed λ/2 dipole antenna.
高效实现5G的遗传优化电磁带隙结构
在本文中,我们采用系统和精确的遗传优化方法,其中包括快速有限元求解器,以获得具有最大可能带隙或多个带隙工作区域的原型电磁带隙结构。所有的模拟结果也都是通过商业计算包提取的,从而验证了该技术的优点。最后,研究了5G电信场景的一个现实案例,其中开发的一个原型几何形状被设置为印刷λ/2偶极子天线的接地面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信