A 0.2-to-3.6TOPS/W Programmable Convolutional Imager SoC with In-Sensor Current-Domain Ternary-Weighted MAC Operations for Feature Extraction and Region-of-Interest Detection

M. Lefebvre, Ludovic Moreau, R. Dekimpe, D. Bol
{"title":"A 0.2-to-3.6TOPS/W Programmable Convolutional Imager SoC with In-Sensor Current-Domain Ternary-Weighted MAC Operations for Feature Extraction and Region-of-Interest Detection","authors":"M. Lefebvre, Ludovic Moreau, R. Dekimpe, D. Bol","doi":"10.1109/ISSCC42613.2021.9365839","DOIUrl":null,"url":null,"abstract":"Mixed-signal vision chips are becoming increasingly popular for low-power embedded computer vision applications on smartphones, wearables and IoT nodes, as they meet stringent power and area constraints while maintaining a sufficient level of accuracy for low- to medium-level image processing tasks. On the one hand, in-sensor processing [1, 2] enables massively parallel operation but relies on pixel-level processing elements that degrade the pixel pitch and restrict the convolutional receptive field to neighboring pixels [1], precluding multi-scale operation. On the other hand, near-sensor processing [3–5] can operate at multiple scales by pixel downsampling [3] or binning [4] but entails significant power and area overhead as an analog memory is required to store pixel values awaiting processing. In addition, previous near-sensor processing SoCs are generally application-specific and thus suffer from limited versatility. In this paper, we present a 65nm QQVGA convolutional imager SoC codenamed SleepSpotter capable of versatile feature extraction and region-of-interest (RoI) detection based on in-sensor current-domain MAC operations. It operates at 6 different scales, features programmable filter size (F), stride (S), and ternary filter weights (1.5b). It reaches a minimum energy of 2.5pJ/pixel•frame•filter and a peak efficiency of 3.6TOPS/W, with 29% pixel area overhead for enabling the convolution and without the need for an analog memory.","PeriodicalId":371093,"journal":{"name":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42613.2021.9365839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Mixed-signal vision chips are becoming increasingly popular for low-power embedded computer vision applications on smartphones, wearables and IoT nodes, as they meet stringent power and area constraints while maintaining a sufficient level of accuracy for low- to medium-level image processing tasks. On the one hand, in-sensor processing [1, 2] enables massively parallel operation but relies on pixel-level processing elements that degrade the pixel pitch and restrict the convolutional receptive field to neighboring pixels [1], precluding multi-scale operation. On the other hand, near-sensor processing [3–5] can operate at multiple scales by pixel downsampling [3] or binning [4] but entails significant power and area overhead as an analog memory is required to store pixel values awaiting processing. In addition, previous near-sensor processing SoCs are generally application-specific and thus suffer from limited versatility. In this paper, we present a 65nm QQVGA convolutional imager SoC codenamed SleepSpotter capable of versatile feature extraction and region-of-interest (RoI) detection based on in-sensor current-domain MAC operations. It operates at 6 different scales, features programmable filter size (F), stride (S), and ternary filter weights (1.5b). It reaches a minimum energy of 2.5pJ/pixel•frame•filter and a peak efficiency of 3.6TOPS/W, with 29% pixel area overhead for enabling the convolution and without the need for an analog memory.
基于传感器内电流域三加权MAC操作的0.2 ~ 3.6 tops /W可编程卷积成像仪SoC,用于特征提取和感兴趣区域检测
混合信号视觉芯片在智能手机、可穿戴设备和物联网节点上的低功耗嵌入式计算机视觉应用中越来越受欢迎,因为它们满足严格的功率和面积限制,同时保持足够的精度,用于中低水平的图像处理任务。一方面,传感器内处理[1,2]支持大规模并行操作,但依赖于像素级处理元素,这些元素会降低像素间距,并将卷积接受场限制在相邻像素[1],从而阻碍了多尺度操作。另一方面,近传感器处理[3 - 5]可以通过像素降采样[3]或分组[4]在多个尺度上运行,但需要大量的功率和面积开销,因为需要模拟存储器来存储等待处理的像素值。此外,以前的近传感器处理soc通常是特定于应用的,因此通用性有限。在本文中,我们提出了一种代号为SleepSpotter的65nm QQVGA卷积成像仪SoC,能够基于传感器内当前域MAC操作进行多功能特征提取和感兴趣区域(RoI)检测。它可以在6种不同的尺度上运行,具有可编程滤波器尺寸(F),步幅(S)和三元滤波器权重(1.5b)。它的最小能量为2.5pJ/像素•帧•滤波器,峰值效率为3.6TOPS/W,用于实现卷积的像素面积开销为29%,无需模拟存储器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信