H2MN

Zhen Zhang, Jiajun Bu, M. Ester, Z. Li, Chengwei Yao, Zhi Yu, Can Wang
{"title":"H2MN","authors":"Zhen Zhang, Jiajun Bu, M. Ester, Z. Li, Chengwei Yao, Zhi Yu, Can Wang","doi":"10.1145/3447548.3467328","DOIUrl":null,"url":null,"abstract":"Graph similarity learning, which measures the similarities between a pair of graph-structured objects, lies at the core of various machine learning tasks such as graph classification, similarity search, etc. In this paper, we devise a novel graph neural network based framework to address this challenging problem, motivated by its great success in graph representation learning. As the vast majority of existing graph neural network models mainly concentrate on learning effective node or graph level representations of a single graph, little effort has been made to jointly reason over a pair of graph-structured inputs for graph similarity learning. To this end, we propose Hierarchical Hypergraph Matching Networks (H2sup>MN) to calculate the similarities between graph pairs with arbitrary structure. Specifically, our proposed H2MN learns graph representation from the perspective of hypergraph, and takes each hyperedge as a subgraph to perform subgraph matching, which could capture the rich substructure similarities across the graph. To enable hierarchical graph representation and fast similarity computation, we further propose a hyperedge pooling operator to transform each graph into a coarse graph of reduced size. Then, a multi-perspective cross-graph matching layer is employed on the coarsened graph pairs to extract the inter-graph similarity. Comprehensive experiments on five public datasets empirically demonstrate that our proposed model can outperform state-of-the-art baselines with different gains for graph-graph classification and regression tasks.","PeriodicalId":421090,"journal":{"name":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447548.3467328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Graph similarity learning, which measures the similarities between a pair of graph-structured objects, lies at the core of various machine learning tasks such as graph classification, similarity search, etc. In this paper, we devise a novel graph neural network based framework to address this challenging problem, motivated by its great success in graph representation learning. As the vast majority of existing graph neural network models mainly concentrate on learning effective node or graph level representations of a single graph, little effort has been made to jointly reason over a pair of graph-structured inputs for graph similarity learning. To this end, we propose Hierarchical Hypergraph Matching Networks (H2sup>MN) to calculate the similarities between graph pairs with arbitrary structure. Specifically, our proposed H2MN learns graph representation from the perspective of hypergraph, and takes each hyperedge as a subgraph to perform subgraph matching, which could capture the rich substructure similarities across the graph. To enable hierarchical graph representation and fast similarity computation, we further propose a hyperedge pooling operator to transform each graph into a coarse graph of reduced size. Then, a multi-perspective cross-graph matching layer is employed on the coarsened graph pairs to extract the inter-graph similarity. Comprehensive experiments on five public datasets empirically demonstrate that our proposed model can outperform state-of-the-art baselines with different gains for graph-graph classification and regression tasks.
H2MN
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信