{"title":"Optimal Versus Robust Inference in Nearly Integrated Non Gaussian Models","authors":"S. B. Thompson","doi":"10.2139/ssrn.399000","DOIUrl":null,"url":null,"abstract":"Elliott, Rothenberg and Stock (1996) derived a class of point-optimal unit root tests in a time series model with Gaussian errors. Other authors have proposed \"robust\" tests which are not optimal for any model but perform well when the error distribution has thick tails. I derive a class of point-optimal tests for models with non Gaussian errors. When the true error distribution is known and has thick tails, the point-optimal tests are generally more powerful than Elliott et al.'s (1996) tests as well as the robust tests. However, when the true error distribution is unknown and asymmetric, the point-optimal tests can behave very badly. Thus there is a tradeoff between robustness to unknown error distributions and optimality with respect to the trend coefficients.","PeriodicalId":221813,"journal":{"name":"Harvard Economics Department Working Paper Series","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Harvard Economics Department Working Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.399000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Elliott, Rothenberg and Stock (1996) derived a class of point-optimal unit root tests in a time series model with Gaussian errors. Other authors have proposed "robust" tests which are not optimal for any model but perform well when the error distribution has thick tails. I derive a class of point-optimal tests for models with non Gaussian errors. When the true error distribution is known and has thick tails, the point-optimal tests are generally more powerful than Elliott et al.'s (1996) tests as well as the robust tests. However, when the true error distribution is unknown and asymmetric, the point-optimal tests can behave very badly. Thus there is a tradeoff between robustness to unknown error distributions and optimality with respect to the trend coefficients.