{"title":"MÜŞTERİ PROFİLİ VE ALIŞVERİŞ HAREKETLERİNİ BELİRLEMEDE RFM ANALİZİ VE BİRLİKTELİK KURALLARI ANALİZİ: PERAKENDE SEKTÖRÜNDE BİR UYGULAMA","authors":"Gülfem Oğur, Oğuz Borat","doi":"10.55071/ticaretfbd.1327068","DOIUrl":null,"url":null,"abstract":"Günümüzde gelişen teknolojiyle birlikte hızlı değişen pazarlama dünyası artık ürün bazlı alınan stratejilerden uzaklaşarak, müşteri faktörünün önemini anlamış ve müşteriyi odak noktasına koyarak çalışmaları bu yönde yapmıştır. Bu çalışmada perakende sektöründe, müşterilerin alışverişteki davranışları analiz edilerek müşteri profilleri çıkarılıp her bir müşteri profiline uygun kampanya stratejilerinin geliştirilmesi amaçlanmıştır. Yapılan çalışma iki aşamadan oluşmaktadır. Birinci aşamada, müşterilerin satın alma alışkanlıkları RFM analizi ile belirlenmiştir. RFM analizi aracılığıyla müşterinin yakın zamanda satın alma işlemi, işlem sıklığı ve satın alma büyüklüğüne göre segmentlere ayırılmıştır, sonrasında ise her segmente uygun olacak kampanya stratejileri önerilmiştir. İkinci aşamada ise veri madenciliğinde kullanılan birliktelik kuralları analizinden biri olan Apriori Algoritması kullanılarak müşterilerin satın aldıkları ürünler arasındaki bağlantıları analiz edilmiştir. Böylelikle müşterilerin hangi ürünleri birlikte satın aldıkları belirlenip kârı arttırmaya yönelik yapılabilecek stratejilere yön verilmeye çalışılmıştır. Çalışmanın sonuçlarına göre 10 farklı müşteri kümesi oluşturulmuştur. Harcama tutarları en yüksek olup, şirket açısından en karlı müşteri profilinin “Champions” olduğu, en az kârlı ve yakın zamanda neredeyse hiç alışveriş yapmamış kayıp müşteri olarak adlandırdığımız müşteri profillerinin ise “Hibernating” müşteri profilinin olduğu belirlenmiştir.","PeriodicalId":276625,"journal":{"name":"İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55071/ticaretfbd.1327068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Günümüzde gelişen teknolojiyle birlikte hızlı değişen pazarlama dünyası artık ürün bazlı alınan stratejilerden uzaklaşarak, müşteri faktörünün önemini anlamış ve müşteriyi odak noktasına koyarak çalışmaları bu yönde yapmıştır. Bu çalışmada perakende sektöründe, müşterilerin alışverişteki davranışları analiz edilerek müşteri profilleri çıkarılıp her bir müşteri profiline uygun kampanya stratejilerinin geliştirilmesi amaçlanmıştır. Yapılan çalışma iki aşamadan oluşmaktadır. Birinci aşamada, müşterilerin satın alma alışkanlıkları RFM analizi ile belirlenmiştir. RFM analizi aracılığıyla müşterinin yakın zamanda satın alma işlemi, işlem sıklığı ve satın alma büyüklüğüne göre segmentlere ayırılmıştır, sonrasında ise her segmente uygun olacak kampanya stratejileri önerilmiştir. İkinci aşamada ise veri madenciliğinde kullanılan birliktelik kuralları analizinden biri olan Apriori Algoritması kullanılarak müşterilerin satın aldıkları ürünler arasındaki bağlantıları analiz edilmiştir. Böylelikle müşterilerin hangi ürünleri birlikte satın aldıkları belirlenip kârı arttırmaya yönelik yapılabilecek stratejilere yön verilmeye çalışılmıştır. Çalışmanın sonuçlarına göre 10 farklı müşteri kümesi oluşturulmuştur. Harcama tutarları en yüksek olup, şirket açısından en karlı müşteri profilinin “Champions” olduğu, en az kârlı ve yakın zamanda neredeyse hiç alışveriş yapmamış kayıp müşteri olarak adlandırdığımız müşteri profillerinin ise “Hibernating” müşteri profilinin olduğu belirlenmiştir.