Segmentation and Classification of Cardiac Sound Signals and Their Use in the Diagnosis of Heart Disease

Mohamed Rebiai, B. Bengherbia, Nadjet Benkhaoua, Nadjet Douik, Hamza Hentabli, Yassine Toumi
{"title":"Segmentation and Classification of Cardiac Sound Signals and Their Use in the Diagnosis of Heart Disease","authors":"Mohamed Rebiai, B. Bengherbia, Nadjet Benkhaoua, Nadjet Douik, Hamza Hentabli, Yassine Toumi","doi":"10.1109/ICTACSE50438.2022.10009654","DOIUrl":null,"url":null,"abstract":"The PCG Phonocardiogram signal represents the recording of heart sounds. The study of intracardiac hemodynamic makes it possible to understand the nature and origin of these normal and pathological heart sounds. The classification of PCG signal beats into different pathological cases is a very complex recognition task, which has prompted researchers to develop techniques for the automatic classification of cardiovascular diseases for proper diagnosis. In this manuscript, we propose an automatic classification of PCG signals using the Deep Learning ANN algorithm based on PCG signal segmentation to extract features from PCG signals. The results allow us to find the type of disease with an accuracy of 96%.","PeriodicalId":301767,"journal":{"name":"2022 International Conference on Theoretical and Applied Computer Science and Engineering (ICTASCE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Theoretical and Applied Computer Science and Engineering (ICTASCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTACSE50438.2022.10009654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The PCG Phonocardiogram signal represents the recording of heart sounds. The study of intracardiac hemodynamic makes it possible to understand the nature and origin of these normal and pathological heart sounds. The classification of PCG signal beats into different pathological cases is a very complex recognition task, which has prompted researchers to develop techniques for the automatic classification of cardiovascular diseases for proper diagnosis. In this manuscript, we propose an automatic classification of PCG signals using the Deep Learning ANN algorithm based on PCG signal segmentation to extract features from PCG signals. The results allow us to find the type of disease with an accuracy of 96%.
心音信号的分割分类及其在心脏病诊断中的应用
PCG心音图信号代表心音的记录。心内血流动力学的研究使了解这些正常和病理性心音的性质和起源成为可能。将PCG信号节拍分类为不同的病理病例是一项非常复杂的识别任务,这促使研究者开发心血管疾病的自动分类技术,以便进行正确的诊断。在本文中,我们提出了一种基于PCG信号分割的深度学习人工神经网络算法对PCG信号进行自动分类,从PCG信号中提取特征。结果使我们能够以96%的准确率找到疾病的类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信