Multi-Start Strategy based Global Optimization Method for Ambient Signal-based Load Modeling

Peixuan Wu, Chao Lu, Ying Wang, Chengzhi Zhu, Shujun Zhang
{"title":"Multi-Start Strategy based Global Optimization Method for Ambient Signal-based Load Modeling","authors":"Peixuan Wu, Chao Lu, Ying Wang, Chengzhi Zhu, Shujun Zhang","doi":"10.1109/PSGEC51302.2021.9542797","DOIUrl":null,"url":null,"abstract":"Load modeling is critical for power system transient analysis and simulation. In recent studies, ambient signal-based parameter identification is considered as an effective method to obtain time-varying model parameters. However, low fluctuation amplitude of ambient signals may exacerbate the issue of multiple local optimal solutions, which is derived from the nonconvex and nonlinear characteristics of parameter identification problem. In this paper, a multi-start strategy based global optimization method is presented for ambient signal-based load parameter identification. Firstly, the selection of start points is formulated as a maximum diversity problem which can be solved by greedy algorithm. Then, we apply trust region-based local solvers to identify model parameters and obtain global optimum from multiple local solutions. Simulation results in the IEEE-39 bus system have demonstrated the global accuracy and efficiency of the proposed method.","PeriodicalId":221281,"journal":{"name":"2021 Power System and Green Energy Conference (PSGEC)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Power System and Green Energy Conference (PSGEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PSGEC51302.2021.9542797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Load modeling is critical for power system transient analysis and simulation. In recent studies, ambient signal-based parameter identification is considered as an effective method to obtain time-varying model parameters. However, low fluctuation amplitude of ambient signals may exacerbate the issue of multiple local optimal solutions, which is derived from the nonconvex and nonlinear characteristics of parameter identification problem. In this paper, a multi-start strategy based global optimization method is presented for ambient signal-based load parameter identification. Firstly, the selection of start points is formulated as a maximum diversity problem which can be solved by greedy algorithm. Then, we apply trust region-based local solvers to identify model parameters and obtain global optimum from multiple local solutions. Simulation results in the IEEE-39 bus system have demonstrated the global accuracy and efficiency of the proposed method.
基于多启动策略的环境信号负荷建模全局优化方法
负荷建模是电力系统暂态分析与仿真的关键。近年来,基于环境信号的参数辨识被认为是获取时变模型参数的有效方法。然而,由于环境信号波动幅度小,可能会加剧参数辨识问题的非凸和非线性特性导致的多个局部最优解问题。提出了一种基于多启动策略的基于环境信号的负载参数辨识全局优化方法。首先,将起始点的选择表述为一个可由贪心算法求解的最大分集问题;然后,应用基于信任区域的局部求解器识别模型参数,并从多个局部解中得到全局最优解。在IEEE-39总线系统中的仿真结果证明了该方法的全局精度和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信