Noise-Robust Spoken Language Identification Using Language Relevance Factor Based Embedding

H. Muralikrishna, Shikha Gupta, Dileep Aroor Dinesh, Padmanabhan Rajan
{"title":"Noise-Robust Spoken Language Identification Using Language Relevance Factor Based Embedding","authors":"H. Muralikrishna, Shikha Gupta, Dileep Aroor Dinesh, Padmanabhan Rajan","doi":"10.1109/SLT48900.2021.9383503","DOIUrl":null,"url":null,"abstract":"State-of-the-art systems for spoken language identification (LID) use i-vector or embedding extracted using a deep neural network (DNN) to represent the utterance. These fixed-length representations are obtained without explicitly considering the relevance of individual frame-level feature vectors in deciding the class label. In this paper, we propose a new method to represent the utterance that considers the relevance of the individual frame-level features. The proposed representation can also preserve the locally available LID-specific information in the input features to some extent. To better utilize the local-level information in the new representation, we propose a novel segment-level matching kernel based support vector machine (SVM) classifier. The proposed representation of the utterance based on the relevance of frame-level features improves the robustness of the LID system to different background noise conditions in the speech. The experiments conducted on speech with different background conditions show that the proposed approach performs better than state-of-the-art approaches in noisy speech and performs similarly to the state-of-the-art systems in clean speech condition.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

State-of-the-art systems for spoken language identification (LID) use i-vector or embedding extracted using a deep neural network (DNN) to represent the utterance. These fixed-length representations are obtained without explicitly considering the relevance of individual frame-level feature vectors in deciding the class label. In this paper, we propose a new method to represent the utterance that considers the relevance of the individual frame-level features. The proposed representation can also preserve the locally available LID-specific information in the input features to some extent. To better utilize the local-level information in the new representation, we propose a novel segment-level matching kernel based support vector machine (SVM) classifier. The proposed representation of the utterance based on the relevance of frame-level features improves the robustness of the LID system to different background noise conditions in the speech. The experiments conducted on speech with different background conditions show that the proposed approach performs better than state-of-the-art approaches in noisy speech and performs similarly to the state-of-the-art systems in clean speech condition.
基于语言相关因子嵌入的噪声鲁棒口语识别
最先进的口语识别系统(LID)使用i向量或嵌入提取,使用深度神经网络(DNN)来表示话语。在确定类标签时,这些固定长度的表示没有明确考虑单个帧级特征向量的相关性。在本文中,我们提出了一种新的方法来表示话语,该方法考虑了各个帧级特征的相关性。所提出的表示还可以在一定程度上保留输入特征中本地可用的特定于lid的信息。为了更好地利用新表示中的局部信息,我们提出了一种新的基于段级匹配核的支持向量机(SVM)分类器。所提出的基于帧级特征相关性的话语表示提高了LID系统对语音中不同背景噪声条件的鲁棒性。在不同背景条件下进行的语音实验表明,该方法在嘈杂语音条件下的性能优于现有的方法,在干净语音条件下的性能与现有系统相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信