HPUCache: Toward High Performance and Resource Utilization in Clustered Cache via Data Copying and Instance Merging

Qianli Wang, Si Wu, Yongkun Li, Yinlong Xu, Fei Chen, Pengcheng Wang, Lei Han
{"title":"HPUCache: Toward High Performance and Resource Utilization in Clustered Cache via Data Copying and Instance Merging","authors":"Qianli Wang, Si Wu, Yongkun Li, Yinlong Xu, Fei Chen, Pengcheng Wang, Lei Han","doi":"10.1109/IWQoS54832.2022.9812925","DOIUrl":null,"url":null,"abstract":"As one of the most popular in-memory cache systems, Redis provides low-latency and high-performance data access for modern internet services. However, in large-scale Redis systems, the access skewness and locality in storage workloads induce a small number of hot-spot instances with degraded system performance and massive cold instances with low CPU utilization. This paper proposes HPUCache to address the hot-spots via data copying and cold instances via instance merging. HPUCache fully utilizes the cached mapping in Redis client, and dynamically updates this mapping to enable access to the multiple data copies. Hence it can manage multiple copies achieving both Redis client compatibility and high user access performance. It also proposes an asynchronous instance merging strategy based on disk snapshots and temporal caches, which separates the massive data movement from the critical user access path to achieve high performance instance merging. We integrate HPUCache into Redis. Experiments under two types of workloads show that, compared to the native Redis design, HPUCache achieves 2.4× and 3.5× performance gains, 2× and 6× CPU utilization gains respectively.","PeriodicalId":353365,"journal":{"name":"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS54832.2022.9812925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As one of the most popular in-memory cache systems, Redis provides low-latency and high-performance data access for modern internet services. However, in large-scale Redis systems, the access skewness and locality in storage workloads induce a small number of hot-spot instances with degraded system performance and massive cold instances with low CPU utilization. This paper proposes HPUCache to address the hot-spots via data copying and cold instances via instance merging. HPUCache fully utilizes the cached mapping in Redis client, and dynamically updates this mapping to enable access to the multiple data copies. Hence it can manage multiple copies achieving both Redis client compatibility and high user access performance. It also proposes an asynchronous instance merging strategy based on disk snapshots and temporal caches, which separates the massive data movement from the critical user access path to achieve high performance instance merging. We integrate HPUCache into Redis. Experiments under two types of workloads show that, compared to the native Redis design, HPUCache achieves 2.4× and 3.5× performance gains, 2× and 6× CPU utilization gains respectively.
HPUCache:通过数据复制和实例合并实现集群缓存的高性能和资源利用率
作为最流行的内存缓存系统之一,Redis为现代互联网服务提供了低延迟和高性能的数据访问。然而,在大规模Redis系统中,存储工作负载的访问偏度和局部性导致了少量的热点实例和大量的冷实例,导致系统性能下降,CPU利用率低。本文提出HPUCache通过数据复制解决热点问题,通过实例合并解决冷实例问题。HPUCache充分利用了Redis客户端的缓存映射,并动态更新该映射,使访问多个数据副本成为可能。因此,它可以管理多个副本,同时实现Redis客户端兼容性和高用户访问性能。提出了一种基于磁盘快照和临时缓存的异步实例合并策略,将海量数据移动与关键用户访问路径分离,实现高性能的实例合并。我们将HPUCache集成到Redis中。两种工作负载下的实验表明,与Redis原生设计相比,HPUCache分别实现了2.4倍和3.5倍的性能提升,2倍和6倍的CPU利用率提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信