User's Intention Understanding in Question-Answering System Using Attention-based LSTM

Yukio Matsuyoshi, T. Takiguchi, Y. Ariki
{"title":"User's Intention Understanding in Question-Answering System Using Attention-based LSTM","authors":"Yukio Matsuyoshi, T. Takiguchi, Y. Ariki","doi":"10.23919/APSIPA.2018.8659636","DOIUrl":null,"url":null,"abstract":"A rule-based question-answering system is limited in its ability to understand a user's intention due to the inevitable incompleteness of the rules. To address this problem, in this paper, we propose a method to estimate question type and question keyword class from a user's question by using an attention-based LSTM (Long Short-Term Memory) model. We also propose a joint model for simultaneous estimation of question type and question keyword class. Through the experiment, the effectiveness of our proposed method is evaluated based upon estimation rates. In addition, the proposed method for question type estimation is compared with a rule-based system, support vector machine (SVM), and Random Forest. The method for question keyword class estimation is also compared with the non-attention LSTM model and the conventional model.","PeriodicalId":287799,"journal":{"name":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPA.2018.8659636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A rule-based question-answering system is limited in its ability to understand a user's intention due to the inevitable incompleteness of the rules. To address this problem, in this paper, we propose a method to estimate question type and question keyword class from a user's question by using an attention-based LSTM (Long Short-Term Memory) model. We also propose a joint model for simultaneous estimation of question type and question keyword class. Through the experiment, the effectiveness of our proposed method is evaluated based upon estimation rates. In addition, the proposed method for question type estimation is compared with a rule-based system, support vector machine (SVM), and Random Forest. The method for question keyword class estimation is also compared with the non-attention LSTM model and the conventional model.
基于注意力的LSTM问答系统中的用户意图理解
基于规则的问答系统理解用户意图的能力有限,这是由于规则不可避免的不完整性。为了解决这一问题,本文提出了一种利用基于注意力的LSTM (Long - Short-Term Memory)模型从用户的问题中估计问题类型和问题关键字类别的方法。我们还提出了一个问题类型和问题关键字类同时估计的联合模型。通过实验,基于估计率对所提方法的有效性进行了评价。此外,将本文提出的问题类型估计方法与基于规则的系统、支持向量机(SVM)和随机森林进行了比较。并将该方法与非关注LSTM模型和传统模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信